1
|
Aziz S, Bibi S, Hasan MM, Biswas P, Ali MI, Bilal M, Chopra H, Mukerjee N, Maitra S. A review on influence of biochar amendment on soil processes and environmental remediation. Biotechnol Genet Eng Rev 2024; 40:3270-3304. [PMID: 36747352 DOI: 10.1080/02648725.2022.2122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 02/08/2023]
Abstract
Biochar is the thermal degradation product of biomass generated in an oxygen-limited environment under different pyrolysis conditions. Biochar characteristics are functions of the feedstock material and pyrolysis temperature. Depending on pyrolysis conditions biochar concentrates varying quantities of recalcitrant and labile carbon along with nutrients which in turn affect soil physiochemical properties and microbial processes. Biochar in soil balances carbon content encourages nitrogen fixation and solubilize phosphorus along with enhancing soil enzyme activity. It serves as a microhabitat for microorganisms present in soil thus influences the diversity, composition, and distribution of soil microbial communities by affecting their intra- and interspecific communication. This review provides an overview of the current knowledge about biochar characteristics, its interactions with soil, and associated biota and its role in soil remediation. In addition, this paper also discussed the factors affecting the capacity of biochar to adsorb organic pollutants following different mechanisms. Being an effective adsorbent due its high specific surface area, large porosity, and numerous surface functional groups biochar has been explored extensively in field of environment to remediate contaminated soils.
Collapse
Affiliation(s)
- Sadia Aziz
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
- Department of Microbiology, Quaid I Azam University, Islamabad, Pakistan
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer e Millat University, Islamabad, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
| | | | - Muhammad Bilal
- Faculty of Management Sciences, Riphah International University Islamabad, Islamabad, Pakistan
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata, West Bengal, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
| | - Swastika Maitra
- Department of Microbiology, Adamas University, Kolkata, West Benga, India
| |
Collapse
|
2
|
Siryk O, Tomczyk A, Nosalewicz A, Szewczuk-Karpisz K. Novel biochar-filled hydrogel composites: Assessment of multifunctionality and potential in environmental applications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123345. [PMID: 39536584 DOI: 10.1016/j.jenvman.2024.123345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/29/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Hydrogels (HGs) are hydrophilic 3D-cross-linked polymers applied, inter alia, to improve soil resistance to drought. Their combination with biochar (BC), a product of biomass pyrolysis, can result in obtaining specific composites characterized by the advantages of both initial materials. The BC introduction into HG can double its swelling degree and increase their sorption capacity by more than threefold compared to the pure HG. Furthermore, the composites are able to increase plants biomass (up to 160%), even under heavy metal contamination, and are characterized by lower nutrient release rate (up to 25%) in comparison to the pure hydrogels. This review explores the properties of biochar-filled hydrogel composites, including swelling degrees and ability to absorb heavy metals and other toxic compounds. Additionally, it discusses their agricultural applications as soil conditioners and slow-release fertilizers, covering their effects on water and nutrient retention in the soil, soil microbial activity, as well as plant performance under contamination and drought stress. Finally, the cost-economic assessment and future prospects of these novel materials were proposed. The BC-filled HGs were considered as highly promising soil amendments, but their application potential depended entirely on the development of new production technologies and the investigation of interactions occurring between the composites and the selected soil components.
Collapse
Affiliation(s)
- Olena Siryk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Agnieszka Tomczyk
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | - Artur Nosalewicz
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290, Lublin, Poland
| | | |
Collapse
|
3
|
Ren WL, Ullah A, Yu XZ. Biochar influences phytoremediation of heavy metals in contaminated soils: an overview and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61397-61425. [PMID: 39446207 DOI: 10.1007/s11356-024-35318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Heavy metals (HMs) contamination has gained much attention due to its high degree of toxicity for living organisms. Therefore, different techniques are underway to eradicate HMs from the environment. Among the biological techniques, phytoremediation is a suitable method, but owing to the slow rate and chance of HMs penetration into the food chain, alternative techniques are needed to reduce their phytotoxicity, and biochar is one of them. Due to the diverse characteristics, biochar immobilizes HMs in the soil by improving soil pH, ion exchange, electrostatic interactions, complexation, precipitation, surface adsorption, and microbial activation. Thereby, amendment of biochar in the HMs-contaminated soils reduces HMs toxicity to plants and limits their penetration into the food chain. In contrast, some biochars have also been studied to induce metal availability in soils and subsequently its uptake by plants. This dual role of biochar depends on the feedstock of biochar, incineration temperature, and the rate of application. Moreover, biochar treatments enhance plant growth under HMs stress by improving nutrient availability, water retention capacity, scavenging of reactive oxygen species, and photosynthetic efficiency. Owing to the beneficial characteristics of biochar in HMs-contaminated sites, the number of publications has tremendously increased. Additionally, the plant species and the types of HMs that have been tested frequently under biochar treatments in these articles have been studied. Overall, the current study would help in understanding the mechanisms of how biochar influences phytoremediation of HMs and improves plant growth in HMs-polluted soils and the current scenario of the available literature.
Collapse
Affiliation(s)
- Wei-Lin Ren
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Abid Ullah
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China
| | - Xiao-Zhang Yu
- College of Environmental Science & Engineering, Guilin University of Technology, Guilin, 541004, People's Republic of China.
| |
Collapse
|
4
|
Zhao J, Qiu Y, Yi F, Li J, Wang X, Fu Q, Fu X, Yao Z, Dai Z, Qiu Y, Chen H. Biochar dose-dependent impacts on soil bacterial and fungal diversity across the globe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172509. [PMID: 38642749 DOI: 10.1016/j.scitotenv.2024.172509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/22/2024]
Abstract
Biochar, a widely used material for soil amendment, has been found to offer numerous advantages in improving soil properties and the habitats for soil microorganisms. However, there is still a lack of global perspectives on the influence of various levels of biochar addition on soil microbial diversity and primary components. Thus, in our study, we performed a global meta-analysis of studies to determine how different doses of biochar affect soil total carbon (C), nitrogen (N), pH, alpha- and beta-diversity, and the major phyla of both bacterial and fungal communities. Our results revealed that biochar significantly increased soil pH by 4 %, soil total C and N by 68 % and 22 %, respectively, in which the positive effects increased with biochar doses. Moreover, biochar promoted soil bacterial richness and evenness by 3-8 % at the biochar concentrations of 1-5 % (w/w), while dramatically shifting bacterial beta-diversity at the doses of >2 % (w/w). Specifically, biochar exhibited significantly positive effects on bacterial phyla of Acidobacteria, Bacteroidetes, Gemmatimonadetes, and Proteobacteria, especially Deltaproteobacteria and Gammaproteobacteria, by 4-10 % depending on the concentrations. On the contrary, the bacterial phylum of Verrucomicrobia and fungal phylum of Basidiomycota showed significant negative responses to biochar by -8 % and -24 %, respectively. Therefore, our meta-analysis provides theoretical support for the development of optimized agricultural management practices by emphasizing biochar application dosing.
Collapse
Affiliation(s)
- Jiayi Zhao
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Yingbo Qiu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Fan Yi
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaxin Li
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xueying Wang
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Qi Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xianheng Fu
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhiyuan Yao
- School of Civil and Environmental Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yunpeng Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
5
|
Bolan S, Sharma S, Mukherjee S, Kumar M, Rao CS, Nataraj KC, Singh G, Vinu A, Bhowmik A, Sharma H, El-Naggar A, Chang SX, Hou D, Rinklebe J, Wang H, Siddique KHM, Abbott LK, Kirkham MB, Bolan N. Biochar modulating soil biological health: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169585. [PMID: 38157897 DOI: 10.1016/j.scitotenv.2023.169585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Biochar can be used for multifunctional applications including the improvement of soil health and carbon storage, remediation of contaminated soil and water resources, mitigation of greenhouse gas emissions and odorous compounds, and feed supplementation to improve animal health. A healthy soil preserves microbial biodiversity that is effective in supressing plant pathogens and pests, recycling nutrients for plant growth, promoting positive symbiotic associations with plant roots, improving soil structure to supply water and nutrients, and ultimately enhancing soil productivity and plant growth. As a soil amendment, biochar assures soil biological health through different processes. First, biochar supports habitats for microorganisms due to its porous nature and by promoting the formation of stable soil micro-aggregates. Biochar also serves as a carbon and nutrient source. Biochar alters soil physical and chemical properties, creating optimum soil conditions for microbial diversity. Biochar can also immobilize soil pollutants and reduce their bioavailability that would otherwise inhibit microbial growth. However, depending on the pyrolysis settings and feedstock resources, biochar can be comprised of contaminants including polycyclic aromatic hydrocarbons and potentially toxic elements that can inhibit microbial activity, thereby impacting soil health.
Collapse
Affiliation(s)
- Shiv Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia
| | - Shailja Sharma
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Santanu Mukherjee
- School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Manish Kumar
- Amity Institute of Environmental Sciences, Amity University, Noida, India
| | - Ch Srinivasa Rao
- ICAR-National Academy of Agricultural Research Management, Hyderabad 500 030, India
| | - K C Nataraj
- Agricultural Research Station, Acharya N.G. Ranga Agricultural University, Anantapur 515 001, Andhra Pradesh, India
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science, and Environment (CESE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States of America
| | - Harmandeep Sharma
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States of America
| | - Ali El-Naggar
- Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, People's Republic of China; Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Scott X Chang
- Department of Renewable Resources, 442 Earth Sciences Building, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, People's Republic of China
| | - Kadambot H M Siddique
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Lynette K Abbott
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - M B Kirkham
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, United States of America
| | - Nanthi Bolan
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, Western Australia 6009, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia 6009, Australia; Healthy Environments And Lives (HEAL) National Research Network, Australia.
| |
Collapse
|
6
|
Deshoux M, Sadet-Bourgeteau S, Gentil S, Prévost-Bouré NC. Effects of biochar on soil microbial communities: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166079. [PMID: 37553053 DOI: 10.1016/j.scitotenv.2023.166079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Changes in soil microbial communities may impact soil fertility and stability because microbial communities are key to soil functioning by supporting soil ecological quality and agricultural production. The effects of soil amendment with biochar on soil microbial communities are widely documented but studies highlighted a high degree of variability in their responses following biochar application. The multiple conditions under which they were conducted (experimental designs, application rates, soil types, biochar properties) make it difficult to identify general trends. This supports the need to better determine the conditions of biochar production and application that promote soil microbial communities. In this context, we performed the first ever meta-analysis of the biochar effects on soil microbial biomass and diversity (prokaryotes and fungi) based on high-throughput sequencing data. The majority of the 181 selected publications were conducted in China and evaluated the short-term impact (<3 months) of biochar. We demonstrated that a large panel of variables corresponding to biochar properties, soil characteristics, farming practices or experimental conditions, can affect the effects of biochar on soil microbial characteristics. Using a variance partitioning approach, we showed that responses of soil microbial biomass and prokaryotic diversity were highly dependent on biochar properties. They were influenced by pyrolysis temperature, biochar pH, application rate and feedstock type, as wood-derived biochars have particular physico-chemical properties (high C:N ratio, low nutrient content, large pores size) compared to non-wood-derived biochars. Fungal community data was more heterogenous and scarcer than prokaryote data (30 publications). Fungal diversity indices were rather dependent on soil properties: they were higher in medium-textured soils, with low pH but high soil organic carbon. Altogether, this meta-analysis illustrates the need for long-term field studies in European agricultural context for documenting responses of soil microbial communities to biochar application under diverse conditions combining biochar types, soil properties and conditions of use.
Collapse
Affiliation(s)
- Maëlle Deshoux
- INRAE UMR Agroécologie, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, F-21000 Dijon, France; Groupe Bordet, Froidvent, F-21290 Leuglay, France.
| | - Sophie Sadet-Bourgeteau
- INRAE UMR Agroécologie, Institut Agro, University Bourgogne, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | | | | |
Collapse
|
7
|
Zhang M, Xiong J, Zhou L, Li J, Fan J, Li X, Zhang T, Yin Z, Yin H, Liu X, Meng D. Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132256. [PMID: 37567138 DOI: 10.1016/j.jhazmat.2023.132256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Sulfate-reducing bacteria (SRB) were effective in stabilizing Sb. However, the influence of electron donors and acceptors during SRB remediation, as well as the ecological principles involved, remained unclear. In this study, Desulfovibrio desulfuricans ATCC 7757 was utilized to stabilize soil Sb within microcosm. Humic acid (HA) or sodium sulfate (Na2SO4) were employed to enhance SRB capacity. The SRB+HA treatment exhibited the highest Sb stabilization rate, achieving 58.40%. Bacterial community analysis revealed that SRB altered soil bacterial diversity, community composition, and assembly processes, with homogeneous selection as the predominant assembly processes. When HA and Na2SO4 significantly modified the stimulated microbial community succession trajectories, shaped the taxonomic composition and interactions of the bacterial community, they showed converse effect in shaping bacterial community which were both helpful for promoting dissimilatory sulfate reduction. Na2SO4 facilitated SRB-mediated anaerobic reduction and promoted interactions between SRB and bacteria involved in nitrogen and sulfur cycling. The HA stimulated electron generation and storage, and enhanced the interactions between SRB and bacteria possessing heavy metal tolerance or carbohydrate degradation capabilities.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jing Xiong
- Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Jingjing Li
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian 361000, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian 361000, China
| | - Xing Li
- Hunan HIKEE Environmental Technology CO., LTD, Changsha 410221, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
8
|
Li Y, Zhang Y, Chen X, Liu Y, Li S, Liu H, Xu H. Enhanced cadmium phytoextraction efficiency of ryegrass (Lolium perenne L.) by porous media immobilized Enterobacter sp. TY-1. CHEMOSPHERE 2023; 337:139409. [PMID: 37406938 DOI: 10.1016/j.chemosphere.2023.139409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/06/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Although studies on immobilized microorganisms have been conducted, their performance remains unclear for enhancing plants to remediate cadmium (Cd)-contaminated soil. In this study, a Cd-resistant strain TY-1 with good plant growth promotion traits was immobilized by biochar (BC) or oyster shell (OS) power to strengthen ryegrass to remediate Cd-contaminated soil. SEM-EDS combined with FTIR showed that TY-1 could tolerate Cd toxicity by surface precipitation, and functional groups such as hydroxyl and carbonyl groups might be involved. In the biocomposite treatments, soil pH increased, and the activity of fertility-related enzymes such as dehydrogenase increased by 109.01%-128.01%. The relative abundance of genus Saccharimonadales decreased from 7.97% to 3.35% in BS-TY and 2.61% in OS-TY, respectively. Thus, a suitable environment for ryegrass growth was created. The fresh weight, dry weight, plant height and Cd accumulation of ryegrass in TY treatment increased by 122.92%, 114.81%, 42.08% and 8.05%, respectively, compared to the control. Cd concentration in ryegrass was further increased in BC-TY and OS-TY by 24.14% and 40.23%, respectively. The improvement in soil microcosm and plant biomass forms an ongoing virtuous cycle, demonstrating that using carrier materials to improve the efficiency of microbial-assisted phytoremediation is realistic and feasible.
Collapse
Affiliation(s)
- Yongyun Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yumei Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yikai Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Shiyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
9
|
Bagheri Novair S, Cheraghi M, Faramarzi F, Asgari Lajayer B, Senapathi V, Astatkie T, Price GW. Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115228. [PMID: 37423198 DOI: 10.1016/j.ecoenv.2023.115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
The main challenge of the twenty-first century is to find a balance between environmental sustainability and crop productivity in a world with a rapidly growing population. Soil health is the backbone of a resilient environment and stable food production systems. In recent years, the use of biochar to bind nutrients, sorption of pollutants, and increase crop productivity has gained popularity. This article reviews key recent studies on the environmental impacts of biochar and the benefits of its unique physicochemical features in paddy soils. This review provides critical information on the role of biochar properties on environmental pollutants, carbon and nitrogen cycling, plant growth regulation, and microbial activities. Biochar improves the soil properties of paddy soils through increasing microbial activities and nutrient availability, accelerating carbon and nitrogen cycle, and reducing the availability of heavy metals and micropollutants. For example, a study showed that the application of a maximum of 40 t ha-1 of biochar from rice husks prior to cultivation (at high temperature and slow pyrolysis) increases nutrient utilization and rice grain yield by 40%. Biochar can be used to minimize the use of chemical fertilizers to ensure sustainable food production.
Collapse
Affiliation(s)
- Sepideh Bagheri Novair
- Department of Soil Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Meysam Cheraghi
- Department of Soil Science, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | - Farzaneh Faramarzi
- Department of Agronomy and Plant Breeding, University College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| | | | | | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| | - G W Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
| |
Collapse
|
10
|
Ng CWW, Liao JX, Lau SY, So PS, Hau BCH, Peprah-Manu D. Coupled effects of elevated CO 2 and biochar on microbial communities of vegetated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118136. [PMID: 37196620 DOI: 10.1016/j.jenvman.2023.118136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/20/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Soil microbial communities are important for plant growth and establishing healthy ecosystems. Although biochar is widely adopted as a sustainable fertilizer, its influence on soil ecological functions is still unclear, especially under climate change such as elevated carbon dioxide concentration (eCO2). This study explores the coupled effects between eCO2 and biochar on microbial communities in soil planted with tree seedlings of Schefflera heptaphylla. Root characteristics and soil microbial communities were examined and interpreted with statistical analysis. Results show that biochar application at ambient carbon dioxide concentration (aCO2) always improves plant growth, which is further promoted under eCO2. Similarly, β-glucosidase, urease and phosphatase activities are enhanced by biochar at aCO2 (p < 0.05). In contrast, only urease activity increases with biochar added at eCO2 (p < 0.05). The beneficial effects of biochar on soil enzyme activities become less significant at eCO2. Depending on biochar type, biochar can increase bacterial diversity and fungal richness at aCO2. However, at eCO2, biochar does not significantly affect microbial richness (p > 0.05) while microbial diversity is reduced by peanut shell biochar (p < 0.05). Owing to better plant growth under biochar application and eCO2, plants are likely to become more dominant in specializing the microbial communities that are favourable to them. In such community, the abundance of Proteobacteria is the greatest and increases after biochar addition at eCO2. The most abundant fungus also shifts from Rozellomycota to Ascomycota and Basidiomycota. These microbes can improve soil fertility. Even though the microbial diversity is reduced, using biochar at eCO2 can further promote plant growth, which in turn enhances carbon sequestration. Thus, biochar application can be an effective strategy to facilitate ecological restoration under climate change and relieve the problem of eCO2.
Collapse
Affiliation(s)
- Charles Wang Wai Ng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| | - Jia Xin Liao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| | - Sze Yu Lau
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| | - Pui San So
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| | - Billy Chi Hang Hau
- School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Daniel Peprah-Manu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region of China.
| |
Collapse
|
11
|
Li Y, Li X, Kang X, Zhang J, Sun M, Yu J, Wang H, Pan H, Yang Q, Lou Y, Zhuge Y. Effects of a novel Cd passivation approach on soil Cd availability, plant uptake, and microbial activity in weakly alkaline soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114631. [PMID: 36796206 DOI: 10.1016/j.ecoenv.2023.114631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution, including that caused by cadmium (Cd), is a matter of increasing concern. Although in situ passivation remediation has been widely used to treat heavy metal-polluted soils, most studies have focused on acidic soils, while studies on alkaline soil conditions are scarce. In this study, the effects of biochar (BC), phosphate rock powder (PRP), and humic acid (HA) on Cd2+ adsorption were examined alone and in combination to choose an appropriate Cd passivation approach for weakly alkaline soils. Additionally, the combined impact of passivation on Cd availability, plant Cd absorption, plant physiology indexes, and soil microbial community was elucidated. BC had a higher Cd adsorption capacity and removal rate than those of PRP and HA. Moreover, HA and PRP enhanced the adsorption capacity of BC. A combination of biochar and humic acid (BHA), and biochar and phosphate rock powder (BPRP) significantly affected soil Cd passivation. BHA and BPRP decreased the plant Cd content and soil Cd-DTPA (diethylenetriaminepentaacetic acid) by 31.36 %, 20.80 %, 38.19 %, and 41.26 %, respectively; however, they increased the fresh weight by 65.64-71.48 % respectively, and dry weight by 62.41-71.35 %, respectively. Notably, only BPRP increased the node and root tip number in wheat. Total protein (TP) content increased in BHA and BPRP, with BHA showing lower TP than BPRP. BHA and BPRP showed a reduction in glutathione (GSH), malondialdehyde (MDA), H2O2, and peroxidase (POD); BHA showed a significantly lower GSH than BPRP. Additionally, BHA and BPRP increased soil sucrase, alkaline phosphatase, and urease activities, with BPRP showing considerably higher enzyme activity than BHA. Both BHA and BPRP increased the number of soil bacteria, altered the community composition, and critical metabolic pathways. The results demonstrated that BPRP could be used as a highly effective, novel passivation technique for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yaping Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Xu Li
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Xirui Kang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Jin Zhang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Mingjie Sun
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Jinpeng Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Hui Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Hong Pan
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Quangang Yang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Yanhong Lou
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| | - Yuping Zhuge
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Daizong Road, Tai'an City, Shandong, 271018, PR China.
| |
Collapse
|
12
|
Du M, Zhang J, Wang G, Liu C, Wang Z. Response of bacterial community composition and co-occurrence network to straw and straw biochar incorporation. Front Microbiol 2022; 13:999399. [PMID: 36246223 PMCID: PMC9563622 DOI: 10.3389/fmicb.2022.999399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Microbial decomposition plays a crucial role in the incorporation of straw and straw biochar (SSB) into soil. Lime concretion black soil (LCBS) is a typical low-medium crop yield soil, and it is also one of the main soil types for grain production in China. However, the link between SSB additions and soil bacterial communities in LCBS remains unclear. This study explored the effects of SSB incorporation on bacterial community composition, structure and co-occurrence network patterns at different soil depths and maize growth stages. The results showed that soil PH, soil organic matter and total nitrogen significantly affected the seasonality and stratification of the soil bacterial community. The composition and diversity of bacterial communities were significantly affected by growth period and treatment rather than soil depth. Specifically, the bacterial community diversity increased significantly with crop growth at 0–20 cm, decreased the relative abundance of Actinobacteria, and increased the relative abundance of Proteobacteria and Acidobacteria. SF (straw with fertilizer) and BF (straw biochar with fertilizer) treatments decreased bacterial community diversity. Co-occurrence networks are more complex in BF, S (straw), and SF treatments, and the number of edge network patterns is increased by 92.5, 40, and 60% at the maturity stage compared with F (fertilizer) treatment, respectively. Moreover, the positive effect of straw biochar on the bacterial network pattern increased with time, while the effect of straw weakened. Notably, we found that rare species inside keystone taxa (Gemmatimonadetes and Nitrospirae) play an indispensable role in maintaining bacterial network construction in LCBS. This study offers a comprehensive understanding of the response of soil bacterial communities to SSB addition in LCBS areas, and provides a reference for further improvement of LCBS productivity.
Collapse
Affiliation(s)
- Mingcheng Du
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
- Yangtze Institute for Conservation and Development, Nanjing, China
- Research Center for Climate Change, Nanjing, China
| | - Jianyun Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
- Yangtze Institute for Conservation and Development, Nanjing, China
- Research Center for Climate Change, Nanjing, China
| | - Guoqing Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
- Yangtze Institute for Conservation and Development, Nanjing, China
- Research Center for Climate Change, Nanjing, China
- *Correspondence: Guoqing Wang,
| | - Cuishan Liu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, China
- Yangtze Institute for Conservation and Development, Nanjing, China
- Research Center for Climate Change, Nanjing, China
| | - Zhenlong Wang
- Wudaogou Experimental Station for Hydrology and Water Resources, Bengbu, China
- Anhui Hydraulic Research Institute, Huai River Commission, Bengbu, China
| |
Collapse
|
13
|
Song Y, Zhao Q, Guo X, Ali I, Li F, Lin S, Liu D. Effects of biochar and organic-inorganic fertilizer on pomelo orchard soil properties, enzymes activities, and microbial community structure. Front Microbiol 2022; 13:980241. [PMID: 35992706 PMCID: PMC9382122 DOI: 10.3389/fmicb.2022.980241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Fertilizer management can influence soil microbes, soil properties, enzymatic activities, abundance and community structure. However, information on the effects of biochar in combination with organic-inorganic fertilizer after 3 years under pomelo orchard on soil bacterial abundance, soil properties and enzyme activities are not clear. Therefore, we conducted a field experiment with seven treatments, i.e., (1) Ck (control), (2) T1 (2 kg biochar plant–1), (3) T2 (4 kg biochar plant–1), (4) T3 (2 kg organic-inorganic mixed fertilizer plant–1), (5) T4 (4 kg biochar + 1.7 kg organic-inorganic mixed fertilizer plant–1), (6) T5 (4 kg biochar + 1.4 kg organic-inorganic mixed fertilizer plant–1), and (7) T6 (4 kg biochar + 1.1 kg organic-inorganic mixed fertilizer plant–1). The soil microbial communities were characterized using high-throughput sequencing of 16S and internal transcribed spacer (ITS) ribosomal RNA gene amplicons. The results showed that biochar combined with organic-organic fertilizer significantly improved soil properties (pH, alkali hydrolysable nitrogen, available phosphorus, available potassium, and available magnesium) and soil enzymatic activities [urease, dehydrogenase (DHO), invertase and nitrate reductase (NR) activities]. Furthermore, soil bacterial relative abundance was higher in biochar and organic-inorganic treatments as compared to control plots and the most abundant phyla were Acidobacteria (40%), Proteobacteria (21%), Chloroflexi (17%), Planctomycetes (8%), Bacteroidetes (4%), Verrucomicrobia (2%), and Gemmatimonadetes (1%) among others. Among the treatments, Acidothermus, Acidibacter, Candidatus Solibacter and F473 bacterial genera were highest in combined biochar and organic-inorganic treatments. The lowest bacterial abundance and bacterial compositions were recorded in control plots. The correlation analysis showed that soil attributes, including soil enzymes, were positively correlated with Chloroflexi, Planctomycetes, verrucomicrobia, GAL15 and WPS-2 bacterial abundance. This study demonstrated that biochar with organic-inorganic fertilizer improves soil nutrients, enzymatic activities and bacterial abundance.
Collapse
Affiliation(s)
- Yang Song
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Quan Zhao
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Xiuzhu Guo
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Izhar Ali
- College of Agriculture, Guangxi University, Nanning, China
| | - Fayong Li
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Shaosheng Lin
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
| | - Dongfeng Liu
- Institute of Subtropical Crops of Zhejiang Province, Wenzhou, China
- *Correspondence: Dongfeng Liu,
| |
Collapse
|
14
|
The Impact of Swine Manure Biochar on the Physical Properties and Microbial Activity of Loamy Soils. PLANTS 2022; 11:plants11131729. [PMID: 35807682 PMCID: PMC9269350 DOI: 10.3390/plants11131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022]
Abstract
Biochar has been proven to influence soil hydro-physical properties, as well as the abundance and diversity of microbial communities. However, the relationship between the hydro-physical properties of soils and the diversity of microbial communities is not well studied in the context of biochar application. The soil analyzed in this study was collected from an ongoing field experiment (2019–2024) with six treatments and three replications each of biochar (B1 = 25 t·ha−1 and B0 = no biochar) and nitrogen fertilizer (N1 = 160, N2 = 120 kg·ha−1, and N0 = no fertilizer). The results show that biochar treatments (B1N0, B1N1, and B1N2) significantly improved the soil bulk density and total soil porosity at different depths. The B1N1 treatment substantially enhanced the volumetric water content (VMC) by 5–7% at −4 to −100 hPa suction at 5–10 cm depth. All three biochar treatments strengthened macropores by 33%, 37%, and 41%, respectively, at 5–10 cm depth and by 40%, 45%, and 54%, respectively, at 15–20 cm depth. However, biochar application significantly lowered hydraulic conductivity (HC) and enhanced carbon source utilization and soil indices at different hours. Additionally, a positive correlation was recorded among carbon sources, indices, and soil hydro-physical properties under biochar applications. We can summarize that biochar has the potential to improve soil hydro-physical properties and soil carbon source utilization; these changes tend to elevate fertility and the sustainability of Cambisol.
Collapse
|
15
|
Ali I, Yuan P, Ullah S, Iqbal A, Zhao Q, Liang H, Khan A, Imran, Zhang H, Wu X, Wei S, Gu M, Jiang L. Biochar Amendment and Nitrogen Fertilizer Contribute to the Changes in Soil Properties and Microbial Communities in a Paddy Field. Front Microbiol 2022; 13:834751. [PMID: 35401466 PMCID: PMC8984124 DOI: 10.3389/fmicb.2022.834751] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/21/2022] [Indexed: 12/26/2022] Open
Abstract
Biochar amendment can influence the abundance, activity, and community structure of soil microbes. However, scare information is present about the effect of the combined application of biochar with synthetic nitrogen (N) fertilizer under paddy field condition. We aimed to resolve this research gap in rice field conditions through different biochar in combination with N fertilizers on soil nutrients, soil microbial communities, and rice grain yield. The present study involves eight treatments in the form of biochar (0, 10, 20, and 30 t ha-1) and N (135 and 180 kg ha-1) fertilizer amendments. The soil microbial communities were characterized using high-throughput sequencing of 16S and Internal transcribed spacer (ITS) ribosomal RNA gene amplicons. Experiential findings showed that the treatments had biochar amendments along with N fertilizer significantly advanced soil pH, soil organic carbon (SOC), total nitrogen (TN), soil microbial carbon (SMBC), soil microbial nitrogen (SMBN), and rice grain yield in comparison to sole N application. Furthermore, in comparison with control in the first year (2019), biochar amendment mixed with N fertilizer had more desirable relative abundance of microorganism, phyla Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia with better relative abundance ranging from 8.49, 4.60, 46.30, and 1.51% in T7, respectively. Similarly, during 2020, bacteria phyla Acidobacteria, Actinobacteria, Bacteroidetes, Gemmatimonadetes, Planctomycetes, and Verrucomicrobia were resulted in higher and ranging from 8.69, 5.18, 3.5, 1.9, 4.0, and 1.6%, in biochar applied treatments, respectively, as compared to control (T1). Among the treatments, Sphingopyxis and Thiobacillus bacterial genus were in higher proportion in T7 and T3, respectively, as compared to other treatments and Bacillus was higher in T6. Interestingly, biochar addition significantly decreased the soil fungi phyla Ascomycota, Basidiomycota, Chytridiomycota, and Rozellomycota, in 2020 as compared to 2019. Whereas biochar addition to soil decreased Echria, Kohlmeyeriopsis, and Westerdykella fungal genus as compared to non-biochar treatments. The redundancy analysis showed that soil biochemical traits were positively correlated with soil bacteria. In addition, correlation analysis showed that soil bacteria including Acidobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, and Proteobacteria strongly correlated with rice grain yield. This study demonstrated that soil nutrients and bacteria contribute to an increase in rice yield in combined biochar amendment with lower N treatments.
Collapse
Affiliation(s)
- Izhar Ali
- College of Agriculture, Guangxi University, Nanning, China
| | - Pengli Yuan
- College of Agriculture, Guangxi University, Nanning, China
| | - Saif Ullah
- College of Agriculture, Guangxi University, Nanning, China
| | - Anas Iqbal
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Quan Zhao
- College of Agriculture, Guangxi University, Nanning, China
| | - He Liang
- College of Agriculture, Guangxi University, Nanning, China
| | - Abdullah Khan
- College of Agriculture, Guangxi University, Nanning, China
| | - Imran
- Department of Agronomy, Faculty of Plant Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Hua Zhang
- College of Agriculture, Guangxi University, Nanning, China
| | - Xiaoyan Wu
- College of Agriculture, Guangxi University, Nanning, China
| | - Shanqing Wei
- College of Agriculture, Guangxi University, Nanning, China
| | - Minghua Gu
- College of Agriculture, Guangxi University, Nanning, China
| | - Ligeng Jiang
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Soothar MK, Hamani AKM, Sardar MF, Sootahar MK, Fu Y, Rahim R, Soothar JK, Bhatti SM, Abubakar SA, Gao Y, Sun J. Maize ( Zea mays L.) Seedlings Rhizosphere Microbial Community as Responded to Acidic Biochar Amendment Under Saline Conditions. Front Microbiol 2022; 12:789235. [PMID: 34970245 PMCID: PMC8712691 DOI: 10.3389/fmicb.2021.789235] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 11/13/2022] Open
Abstract
Biochar has extensively been used for multiple purposes in agriculture, including improving soil microbial biomass. The current study aimed to investigate the effect of acidic biochar on maize seedlings’ rhizosphere bacterial abundance under salinity. There were seven treatments and three replicates in a controlled greenhouse coded as B0S1, B1S1, and B2S1 and B0S2, B1S2, and B2S2. CK is control (free of biochar and salt); B0, B1, and B2 are 0, 15, and 30 g biochar (kg soil)–1; and S1 and S2 are 2.5 and 5 g salt pot–1 that were amended, respectively. After harvesting the maize seedlings, the soil samples were collected and analyzed for soil microbial biomass, bacterial abundance, and diversity. The results revealed that relative abundance of Proteobacteria, Actinobacteria, and Chloroflexi increased on phylum level, whereas Actinomarinales, Alphaproteobacteria, and Streptomyces enhanced on genus level, respectively, in B2S1 and B2S2, when compared with CK and non-biochar amended soil under saline conditions. The relative abundance of Actinomarinales was positively correlated with total potassium (TK) and Gematimonadetes negatively correlated with total phosphorus (TP). Biochar addition slightly altered the Ace1, Chao1, and alpha diversity. Principal component analysis corresponded to the changes in soil bacterial community that were closely associated with biochar when compared with CK and salt-treated soils. In conclusion, acidic biochar showed an improved soil microbial community under salinity.
Collapse
Affiliation(s)
- Mukesh Kumar Soothar
- Key Laboratory for Crop Water Requirement and Regulation of Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China.,Department of Soil Science, Sindh Agriculture University, Tando Jam, Pakistan
| | - Abdoul Kader Mounkaila Hamani
- Key Laboratory for Crop Water Requirement and Regulation of Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Muhammad Fahad Sardar
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mahendar Kumar Sootahar
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanyuan Fu
- College of Plant Sciences, Tarim University, Alar, China
| | | | - Jay Kumar Soothar
- Department of Plant Breeding and Genetics, Sindh Agriculture University, Tando Jam, Pakistan
| | | | - Sunusi Amin Abubakar
- Key Laboratory for Crop Water Requirement and Regulation of Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Yang Gao
- Key Laboratory for Crop Water Requirement and Regulation of Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| | - Jingsheng Sun
- Key Laboratory for Crop Water Requirement and Regulation of Ministry of Agriculture and Rural Affairs, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|