1
|
Lu Y, Qin Y, Sun Y, Joseph CML, Bisson LF, Song Y, Liu Y. Insight into the growth and metabolic characteristics of indigenous commercial S. cerevisiae NX11424 at high and low levels of yeast assimilable nitrogen based on metabolomic approach. Food Microbiol 2024; 124:104593. [PMID: 39244355 DOI: 10.1016/j.fm.2024.104593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 06/15/2024] [Accepted: 07/01/2024] [Indexed: 09/09/2024]
Abstract
Yeast assimilable nitrogen (YAN) is one of the important factors affecting yeast growth and metabolism. However, the nitrogen requirement of indigenous commercial S. cerevisiae NX11424 is unclear. In this study, metabolomics was used to analyze the metabolite profiles of the yeast strain NX11424 under high (433 mg/L) and low (55 mg/L) YAN concentrations. It was found that yeast biomass exhibited different trends under different YAN conditions and was generally positively correlated with the initial YAN concentration, while changes of key biomarkers of yeast strain NX11424 at different stages of fermentation showed a similar trend under high and low YAN concentrations. The YAN concentration affected the metabolite levels of the yeast strain NX11424, which resulted in the significant difference in the levels of pyruvic acid, α-oxoglutarate, palmitoleic acid, proline, butane-2,3-diol, citrulline, ornithine, galactinol, citramalic acid, tryptophan, alanine, phosphate and phenylethanol, mainly involving pathways such as central carbon metabolism, amino acid metabolism, fatty acid metabolism, purine metabolism, and energy metabolism. Yeast strain NX11424 could utilize proline to produce protein under a low YAN level. The intracellular level of citrulline and ornithine under high YAN concentration was higher than that under low YAN level. Yeast strain NX11424 is more suitable for fermentation at lower YAN level. The results obtained here will help to rational utilize of YAN by S. cerevisiae NX11424, and is conducive to precise control of the alcohol fermentation and improve wine quality.
Collapse
Affiliation(s)
- Yao Lu
- College of Enology, Northwest A&F University, Yangling, Shannxi, 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, 750104, China
| | - Yi Qin
- College of Enology, Northwest A&F University, Yangling, Shannxi, 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, 750104, China
| | - Yue Sun
- College of Enology, Northwest A&F University, Yangling, Shannxi, 712100, China; College of Enology and Horticulture, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - C M Lucy Joseph
- Department of Viticulture & Enology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Linda F Bisson
- Department of Viticulture & Enology, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Yuyang Song
- College of Enology, Northwest A&F University, Yangling, Shannxi, 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, 750104, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shannxi, 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, 750104, China.
| |
Collapse
|
2
|
Cao X, Hou Y, Liu Q, Yang Q, Liu M, Lin H, Ren Q, Mao J. Composition of Higher Alcohols in Different Alcoholic Beverages and Their Metabolic Dynamics in Bama Pigs. Foods 2024; 13:3316. [PMID: 39456377 PMCID: PMC11507985 DOI: 10.3390/foods13203316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The unique flavour contribution of higher alcohols in alcoholic beverages has received growing attention; however, there is a dearth of information on their in vivo metabolic kinetics. In this study, the composition and content of higher alcohols in different alcoholic beverages from Chinese Baijiu and Lujiu were studied via in vivo analysis using Bama pigs to elucidate the mechanisms for intoxication of alcohol in vitro and in drinkers. Direct injection combined with gas chromatography-mass spectrometry (GC-MS) were used to accurately quantify a total of 14 higher alcohols in five alcoholic beverages. Based on the external standard method, a total content of 289.37-938.33 mg/L was detected, mainly 1-butanol, 3-methyl-1-butanol, 1-hexanol, 2-methyl-1-propanol and 2-butanol. Then, headspace solid-phase microextraction (HS-SPME) and solid-phase extraction (SPE) combined with GC-MS analysis strategy, respectively, were adopted to continuously monitor the changes in the concentrations of ethanol and 11 higher alcohols in the blood within 24 h after gavage of different alcoholic beverages, and the key pharmacokinetic parameters were analysed. The peak concentration (Cmax) and area under curve (AUC) of blood higher alcohols were significantly lower than those of ethanol (p < 0.05), accompanied by a later peak time (Tmax) and a larger apparent clearance rate (CL_F), and there were certain differences between the same higher alcohols in different alcoholic beverages and between different higher alcohols in the same alcoholic beverage. This work provides valuable insights into the metabolism of alcoholic beverages.
Collapse
Affiliation(s)
- Xiaonian Cao
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China; (X.C.); (Q.L.); (M.L.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Yunfei Hou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Qingqing Liu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China; (X.C.); (Q.L.); (M.L.)
| | - Qian Yang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Min Liu
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China; (X.C.); (Q.L.); (M.L.)
| | - Haixu Lin
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Qingxi Ren
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| | - Jian Mao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (Y.H.); (Q.Y.); (H.L.); (J.M.)
| |
Collapse
|
3
|
Yang L, Zhu X, Mao Y, Zhang X, Xu B, Yang X. Effect of different inoculation strategies of mixed culture Saccharomyces cerevisiae/Oenococcus oeni on the aroma quality of Chardonnay wine. Food Res Int 2024; 190:114636. [PMID: 38945625 DOI: 10.1016/j.foodres.2024.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/22/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
There has been growing interest in the use of mixed cultures comprised of Oenococcus oeni and Saccharomyces cerevisiae to produce wine with local style and typicality. This study has investigated the influence of the inoculation protocol of O. oeni on the fermentation kinetics and aromatic profile of Chardonnay wine. The one selected autochthonous O. oeni strain (ZX-1) inoculated at different stages of the alcoholic fermentation process successfully completed malolactic fermentation (MLF). Co-inoculum of S. cerevisiae and O. oeni enabled simultaneous alcoholic fermentation and MLF, leading to at least a 30 % reduction in the total fermentation time when compared to the sequential inoculation process, which was attributed to the lower ethanol stress. Meanwhile, co-inoculum stimulated the accumulation of volatile aroma compounds in Chardonnay wine. In particular, the mixed modality where the O. oeni strain ZX-1 was inoculated 48 h after S. cerevisiae allowed higher levels of terpenes, acetates, short-chain, and medium-chain fatty acid ethyl esters to be produced, which may result in the enhanced floral and fruity attributes of wine. Aroma reconstitution and omission models analysis revealed that the accumulation of linalool, geraniol, isoamyl acetate, ethyl hexanoate, and ethyl caprylate during the mixed fermentation process enhanced the stone fruit, tropical fruit, and citrus aromas in Chardonnay wine. Therefore, the simultaneous fermentation of S. cerevisiae and autochthonous O. oeni ZX-1 has a positive effect on MLF and contributes to producing wines with distinctive style.
Collapse
Affiliation(s)
- Liu Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xia Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China; Gansu Key Lab of Viticulture and Enology, Lanzhou, Gansu, China
| | - Yaling Mao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xuan Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Binyan Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xueshan Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China; Gansu Key Lab of Viticulture and Enology, Lanzhou, Gansu, China.
| |
Collapse
|
4
|
Li P, Song W, Wang Y, Li X, Wu S, Li B, Zhang C. Effects of Heterologous Expression of Genes Related L-Malic acid Metabolism in Saccharomyces uvarum on Flavor Substances Production in Wine. Foods 2024; 13:2038. [PMID: 38998544 PMCID: PMC11241653 DOI: 10.3390/foods13132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
During malolactic fermentation (MLF) of vinification, the harsh L-malic acid undergoes transformation into the milder L-lactic acid, and via decarboxylation reactions it is catalyzed by malolactic enzymes in LAB. The use of bacterial malolactic starter cultures, which usually present challenges in the industry as the suboptimal conditions after alcoholic fermentation (AF), including nutrient limitations, low temperatures, acidic pH levels, elevated alcohol, and sulfur dioxide concentrations after AF, lead to "stuck" or "sluggish" MLF and spoilage of wines. Saccharomyces uvarum has interesting oenological properties and provides a stronger aromatic intensity than Saccharomyces cerevisiae in AF. In the study, the biological pathways of deacidification were constructed in S. uvarum, which made the S. uvarum carry out the AF and MLF simultaneously, as different genes encoding malolactic enzyme (mleS or mleA), malic enzyme (MAE2), and malate permease (melP or MAE1) from Schizosaccharomyces pombe, Lactococcus lactis, Oenococcus oeni, and Lactobacillus plantarum were heterologously expressed. For further inquiry, the effect of L-malic acid metabolism on the flavor balance in wine, the related flavor substances, higher alcohols, and esters production, were detected. Of all the recombinants, the strains WYm1SN with coexpression of malate permease gene MAE1 from S. pombe and malolactic enzyme gene mleS from L. lactis and WYm1m2 with coexpression of gene MAE1 and malate permease gene MAE2 from S. pombe could reduce the L-malic acid contents to about 1 g/L, and in which the mutant WYm1SN exhibited the best effect on the flavor quality improvement.
Collapse
Affiliation(s)
- Ping Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenjun Song
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yumeng Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xin Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Shankai Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Bingjuan Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
5
|
Lian W, Lei J, Han C, Wu J, Liu Z, Liu W, Jiapaer A, Su H, Xu Y, Chen Y, Liu F. Effect of Different Yeasts on the Higher Alcohol Content of Mulberry Wine. Foods 2024; 13:1788. [PMID: 38928730 PMCID: PMC11203288 DOI: 10.3390/foods13121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Healthy, nutritious, and delicious mulberry wine is loved by everyone, but there is no specific yeast for mulberry wine. To screen for yeasts with low-yield higher alcohols for the fermentation of mulberry wine, we tested five commonly used commercial yeasts available on the market to ferment mulberry wine. All five yeasts were able to meet the requirements in terms of yeast fermentation capacity, speed, and physical and chemical markers of mulberry wine. The national standards were met by the fermentation requirements and the fermented mulberry wine. We identified yeast DV10 as a yeast with low-yield higher alcohols suitable for mulberry wine fermentation. The total higher alcohol content in fermented mulberry wine was 298 mg/L, which was 41.9% lower than that of fermented mulberry wine with yeast EC118. The contents of 17 free amino acids and five sugars in mulberry juice and five yeast-fermented mulberry wines were tested. The results showed that the higher the amino acid and sugar content in yeast-fermented mulberry wine, the higher the content of higher alcohols produced by fermentation. A correlation analysis performed on each higher alcohol produced when yeast DV10 fermented the mulberry wine indicated decreased sugar and related amino acids. The findings demonstrated a substantial negative correlation among the levels of increased alcohol, decreased sugar, and matching amino acid content. Considering the correlation values among increased alcohol, decreased sugar, and related amino acids, the very slight difference suggests that both sugar anabolism and amino acid catabolism pathways have an equivalent impact on the synthesis of higher alcohols during the fermentation of mulberry wine. These results provide a theoretical basis for reducing the content of higher alcohols in mulberry wines, given the history and foundation for producing mulberry wine.
Collapse
Affiliation(s)
- Weijia Lian
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Jing Lei
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Chen Han
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Jiuyun Wu
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Zhigang Liu
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Wei Liu
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Ayijiamali Jiapaer
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Hanming Su
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Yanjun Xu
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Ya Chen
- Turpan Institute of Agricultural Science, Xinjiang Academy of Agricultural Science, Turpan 838000, China; (W.L.); (J.L.); (C.H.); (J.W.); (Z.L.); (W.L.); (A.J.); (H.S.); (Y.X.)
| | - Fengjuan Liu
- Institute of Quality Standards & Testing Technology for Agri-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
6
|
Lin Y, Zhang N, Lin Y, Gao Y, Li H, Zhou C, Meng W, Qin W. Transcriptomic and metabolomic correlation analysis: effect of initial SO 2 addition on higher alcohol synthesis in Saccharomyces cerevisiae and identification of key regulatory genes. Front Microbiol 2024; 15:1394880. [PMID: 38803372 PMCID: PMC11128613 DOI: 10.3389/fmicb.2024.1394880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Introduction Higher alcohols are volatile compounds produced during alcoholic fermentation that affect the quality and safety of the final product. This study used a correlation analysis of transcriptomics and metabolomics to study the impact of the initial addition of SO2 (30, 60, and 90 mg/L) on the synthesis of higher alcohols in Saccharomyces cerevisiae EC1118a and to identify key genes and metabolic pathways involved in their metabolism. Methods Transcriptomics and metabolomics correlation analyses were performed and differentially expressed genes (DEGs) and differential metabolites were identified. Single-gene knockouts for targeting genes of important pathways were generated to study the roles of key genes involved in the regulation of higher alcohol production. Results We found that, as the SO2 concentration increased, the production of total higher alcohols showed an overall trend of first increasing and then decreasing. Multi-omics correlation analysis revealed that the addition of SO2 affected carbon metabolism (ko01200), pyruvate metabolism (ko00620), glycolysis/gluconeogenesis (ko00010), the pentose phosphate pathway (ko00030), and other metabolic pathways, thereby changing the precursor substances. The availability of SO2 indirectly affects the formation of higher alcohols. In addition, excessive SO2 affected the growth of the strain, leading to the emergence of a lag phase. We screened the ten most likely genes and constructed recombinant strains to evaluate the impact of each gene on the formation of higher alcohols. The results showed that ADH4, SER33, and GDH2 are important genes of alcohol metabolism in S. cerevisiae. The isoamyl alcohol content of the EC1118a-ADH4 strain decreased by 21.003%; The isobutanol content of the EC1118a-SER33 strain was reduced by 71.346%; and the 2-phenylethanol content of EC1118a-GDH2 strain was reduced by 25.198%. Conclusion This study lays a theoretical foundation for investigating the mechanism of initial addition of SO2 in the synthesis of higher alcohols in S. cerevisiae, uncovering DEGs and key metabolic pathways related to the synthesis of higher alcohols, and provides guidance for regulating these mechanisms.
Collapse
Affiliation(s)
- Yuan Lin
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Na Zhang
- College of Biology and Brewing Engineering, Taishan University, Taian, China
| | - Yonghong Lin
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yinhao Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Hongxing Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Cuixia Zhou
- College of Biology and Brewing Engineering, Taishan University, Taian, China
| | - Wu Meng
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Weishuai Qin
- College of Biology and Brewing Engineering, Taishan University, Taian, China
| |
Collapse
|
7
|
Cicha-Wojciechowicz D, Frank S, Steinhaus M, Majcher MA. Key Odorants Forming Aroma of Polish Mead: Influence of the Raw Material and Manufacturing Processes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10548-10557. [PMID: 38670543 PMCID: PMC11082928 DOI: 10.1021/acs.jafc.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Mead was analyzed by using the concept of molecular sensory science for the identification of key odorants. A total of 29 odor-active compounds were identified in mead by using gas chromatography olfactometry (GCO). Flavor dilution (FD) factors of identified compounds ranged from 1 to 16,384, compounds with FD factors ≥32 were quantitated by using stable isotopically substituted odorants as internal standards or external standard method, and odor activity values (OAVs) were calculated. Fifteen compounds showed OAVs ≥1: aldehydes (2-phenylacetaldehyde, 3-(methylsulfanyl)propanal), 4-hydroxy-3-methoxybenzaldehyde), esters (ethyl 3-methylbutanoate, ethyl propanoate, ethyl octanoate), alcohols (2-phenylethan-1-ol, 3- and 2-methylbutan-1-ol, 3-(methylsulyfanyl)propan-1-ol), furanons (4-hydroxy-2,5-dimethylfuran-3(2H)-one, 3-hydroxy-4,5-dimethylfuran-2(5H)-one), acids (3- and 2-methylbutanoic acid, acetic acid), 1,1-diethoxyethane, and 4-methylphenol. 2-Phenylacetaldehyde (OAV, 3100) was suggested as the compound with the biggest influence on the aroma of mead, followed by 4-hydroxy-2,5-dimethylfuran-3(2H)-one (OAV, 1900), 3-(methylsulfanyl)propanal (OAV, 890), and 2-phenylethan-1-ol (OAV, 680). Quantitative olfactory profile analysis revealed strong honey, malty, and alcoholic impressions. Omission experiments revealed that 3-(methylsulfanyl)propanal, 2-phenylethan-1-ol, 4-hydroxy-2,5-dimethylfuran-3(2H)-one, ethyl propanoate, ethyl 3-methylbutanoate, 2-phenylacetaldehyde, 3- and 2-methylbutanoic acid, 3-hydroxy-4,5-dimethylfuran-2(5H)-one, and 4-hydroxy-3-methoxybenzaldehyde were the key odorants in the mead. Determining concentrations of key odorants in important production steps showed that the fermentation and maturation stages had the strongest effect on the formation of mead aroma.
Collapse
Affiliation(s)
- Daria Cicha-Wojciechowicz
- Faculty
of Food Science and Nutrition, Poznań
University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Stephanie Frank
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Martin Steinhaus
- Leibniz
Institute for Food Systems Biology at the Technical University of
Munich (Leibniz-LSB@TUM), Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Małgorzata Anna Majcher
- Faculty
of Food Science and Nutrition, Poznań
University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
8
|
Temerdashev Z, Khalafyan A, Abakumov A, Bolshov M, Akin'shina V, Kaunova A. Authentication of selected white wines by geographical origin using ICP spectrometric and chemometric analysis. Heliyon 2024; 10:e29607. [PMID: 38681543 PMCID: PMC11046125 DOI: 10.1016/j.heliyon.2024.e29607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/14/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
An important aspect of assessing the authenticity of wines is its geographical origin. The aim of the work is to authenticate by geographical origin according to the data of the ICP-spectrometric and chemometric analysis of elemental "images" of wines produced from white grape varieties Chardonnay, Riesling and Muscat grown in four regions of the Krasnodar Territory, Russia. The difference in the contents of Al, Ba, Ca and Rb in wines was found depending on the variety, and Al, Ba, Rb, Fe, Li, Sr - depending on the region of grape growth. Different models of the experimental data processing were used for attribution of the produced varieties of wine to the area of the grape's growth. The criterion for the quality of the constructed models was the accuracy of the attribution of a wine variety to the area of the grape's growth (%). Analysis of the elemental analysis data of 153 wine samples showed that in terms of attribution accuracy, automated neural networks (100 %) are preferred among machine learning methods, followed by support vector machines (98.69 %) and general discriminant analysis (94.77 %). The applied mathematical models enabled the revealing of the cluster structure of the analyzed wine varieties and their attribution to the area of a grape growth with high accuracy. Sr, Li and Fe concentrations in wines were found as the dominating predictors in the constructed models for definition of the geographical origin of wines. The combination of ICP-spectrometric analysis data with the capabilities of statistical modeling of machine learning methods focused on large-dimensional data made it possible to successfully solve small-dimensional problems of the definition of the geographical origin of wines by their elemental composition and variety.
Collapse
Affiliation(s)
- Zaual Temerdashev
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| | - Alexan Khalafyan
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| | - Aleksey Abakumov
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| | - Mikhail Bolshov
- Institute of Spectroscopy Russian Academy of Sciences, Moscow, Troitsk, 108840, Russian Federation
| | - Vera Akin'shina
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| | - Anastasia Kaunova
- Analytical Chemistry Department, Faculty of Chemistry and High Technologies, Kuban State University, Krasnodar, 350040, Russian Federation
| |
Collapse
|
9
|
Valera MJ, Olivera V, Pérez G, Boido E, Dellacassa E, Carrau F. Impact of phenylalanine on Hanseniaspora vineae aroma metabolism during wine fermentation. Int J Food Microbiol 2024; 415:110631. [PMID: 38402671 DOI: 10.1016/j.ijfoodmicro.2024.110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/27/2024]
Abstract
Hanseniaspora vineae exhibits extraordinary positive oenological characteristics contributing to the aroma and texture of wines, especially by its ability to produce great concentrations of benzenoid and phenylpropanoid compounds compared with conventional Saccharomyces yeasts. Consequently, in practice, sequential inoculation of H. vineae and Saccharomyces cerevisiae allows to improve the aromatic quality of wines. In this work, we evaluated the impact on wine aroma produced by increasing the concentration of phenylalanine, the main amino acid precursor of phenylpropanoids and benzenoids. Fermentations were carried out using a Chardonnay grape juice containing 150 mg N/L yeast assimilable nitrogen. Fermentations were performed adding 60 mg/L of phenylalanine without any supplementary addition to the juice. Musts were inoculated sequentially using three different H. vineae strains isolated from Uruguayan vineyards and, after 96 h, S. cerevisiae was inoculated to complete the process. At the end of the fermentation, wine aromas were analysed by both gas chromatography-mass spectrometry and sensory evaluation through a panel of experts. Aromas derived from aromatic amino acids were differentially produced depending on the treatments. Sensory analysis revealed more floral character and greater aromatic complexity when compared with control fermentations without phenylalanine added. Moreover, fermentations performed in synthetic must with pure H. vineae revealed that even tyrosine can be used in absence of phenylalanine, and phenylalanine is not used by this yeast for the synthesis of tyrosine derivatives.
Collapse
Affiliation(s)
- María José Valera
- Área de Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay.
| | - Valentina Olivera
- Área de Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Gabriel Pérez
- Área de Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Boido
- Área de Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Eduardo Dellacassa
- Laboratorio de Biotecnología de Aromas, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Francisco Carrau
- Área de Enología y Biotecnología de Fermentaciones, Facultad de Química, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Facultad de Medicina, Universidad de la República, Uruguay
| |
Collapse
|
10
|
Sáez‐Sáez J, Munro LJ, Møller‐Hansen I, Kell DB, Borodina I. Identification of transporters involved in aromatic compounds tolerance through screening of transporter deletion libraries. Microb Biotechnol 2024; 17:e14460. [PMID: 38635191 PMCID: PMC11025615 DOI: 10.1111/1751-7915.14460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 03/17/2024] [Indexed: 04/19/2024] Open
Abstract
Aromatic compounds are used in pharmaceutical, food, textile and other industries. Increased demand has sparked interest in exploring biotechnological approaches for their sustainable production as an alternative to chemical synthesis from petrochemicals or plant extraction. These aromatic products may be toxic to microorganisms, which complicates their production in cell factories. In this study, we analysed the toxicity of multiple aromatic compounds in common production hosts. Next, we screened a subset of toxic aromatics, namely 2-phenylethanol, 4-tyrosol, benzyl alcohol, berberine and vanillin, against transporter deletion libraries in Escherichia coli and Saccharomyces cerevisiae. We identified multiple transporter deletions that modulate the tolerance of the cells towards these compounds. Lastly, we engineered transporters responsible for 2-phenylethanol tolerance in yeast and showed improved 2-phenylethanol bioconversion from L-phenylalanine, with deletions of YIA6, PTR2 or MCH4 genes improving titre by 8-12% and specific yield by 38-57%. Our findings provide insights into transporters as targets for improving the production of aromatic compounds in microbial cell factories.
Collapse
Affiliation(s)
- Javier Sáez‐Sáez
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Lachlan Jake Munro
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Iben Møller‐Hansen
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
- Institute of Systems, Molecular and Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Irina Borodina
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs. LyngbyDenmark
| |
Collapse
|
11
|
Wang D, He M, Zhang M, Yang H, Huang J, Zhou R, Jin Y, Wu C. Food yeasts: occurrence, functions, and stress tolerance in the brewing of fermented foods. Crit Rev Food Sci Nutr 2023; 63:12136-12149. [PMID: 35875880 DOI: 10.1080/10408398.2022.2098688] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
With the rapid development of systems biology technology, there is a deeper understanding of the molecular biological mechanisms and physiological characteristics of microorganisms. Yeasts are widely used in the food industry with their excellent fermentation performances. While due to the complex environments of food production, yeasts have to suffer from various stress factors. Thus, elucidating the stress mechanisms of food yeasts and proposing potential strategies to improve tolerance have been widely concerned. This review summarized the recent signs of progress in the variety, functions, and stress tolerance of food yeasts. Firstly, the main food yeasts occurred in fermented foods, and the taxonomy levels are demonstrated. Then, the main functions of yeasts including aroma enhancer, safety performance enhancer, and fermentation period reducer are discussed. Finally, the stress response mechanisms of yeasts and the strategies to improve the stress tolerance of cells are reviewed. Based on sorting out these related recent researches systematically, we hope that this review can provide help and approaches to further exert the functions of food yeasts and improve food production efficiency.
Collapse
Affiliation(s)
- Dingkang Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Muwen He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Wei Y, Zhang S, Guan G, Wan Z, Wang R, Li P, Liu Y, Wang J, Jiao G, Wang H, Sun C. A specific and rapid method for detecting Bacillus and Acinetobacter species in Daqu. Front Bioeng Biotechnol 2023; 11:1261563. [PMID: 37818237 PMCID: PMC10561003 DOI: 10.3389/fbioe.2023.1261563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/11/2023] [Indexed: 10/12/2023] Open
Abstract
Daqu is a spontaneous, solid-state cereal fermentation product used for saccharification and as a starter culture for Chinese Baijiu production. Bacillus and Acinetobacter, two dominant microbial genera in Daqu, produce enzymes and organic acids that influence the Daqu quality. However, there are no rapid analytical methods for detecting Bacillus and Acinetobacter. We designed primers specific to the genera Bacillus and Acinetobacter to perform genetic comparisons using the 16 S rRNA. After amplification of polymerase chain reaction using specific primers, high-throughput sequencing was performed to detect strains of Bacillus and Acinetobacter. The results showed that the effective amplification rates for Bacillus and Acinetobacter in Daqu were 86.92% and 79.75%, respectively. Thus, we have devised and assessed a method to accurately identify the species associated with Bacillus and Acinetobacter in Daqu, which can also hold significance for bacterial typing and identification.
Collapse
Affiliation(s)
- Yanwei Wei
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Shuyue Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guikun Guan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ziran Wan
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Piwu Li
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Yu Liu
- Lanling Meijiu Co., Ltd., Lanling, Shandong, China
| | - Junqing Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Guanhua Jiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Hao Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| | - Chuying Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology, Jinan, Shandong, China
- Department of Biological Engineering, Qilu University of Technology, Jinan, Shandong, China
| |
Collapse
|
13
|
Denchai S, Sasomsin S, Prakitchaiwattana C, Phuenpong T, Homyog K, Mekboonsonglarp W, Settachaimongkon S. Influence of Different Types, Utilization Times, and Volumes of Aging Barrels on the Metabolite Profile of Red Wine Revealed by 1H-NMR Metabolomics Approach. Molecules 2023; 28:6716. [PMID: 37764490 PMCID: PMC10534683 DOI: 10.3390/molecules28186716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
It is well recognized that the aging process is a critical step in winemaking because it induces substantial chemical changes linked to the organoleptic properties and stability of the finished wines. Therefore, this study aimed to investigate the influence of different types, utilization times, and volumes of aging barrels on the metabolite profile of red wines, produced from Thai-grown Shiraz grapes, using a non-targeted proton nuclear magnetic resonance (1H-NMR) metabolomics approach. As a result, 37 non-volatile polar metabolites including alcohols, amino acids, organic acids, carbohydrates and low-molecular-weight phenolics were identified. Chemometric analysis allowed the discrimination of wine metabolite profiles associated with different types of aging containers (oak barrels vs. stainless-steel tanks), as well as the utilization times (2, 6 and >10 years old) and volumes (225, 500 and 2000 L) of the wooden barrels employed. Significant variations in the concentration of formate, fumarate, pyruvate, succinate, citrate, gallate, acetate, tyrosine, phenylalanine, histidine, γ-aminobutyrate, methionine and choline were statistically suggested as indicators accountable for the discrimination of samples aged under different conditions. These feature biomarkers could be applied to manipulate the use of aging containers to achieve the desired wine maturation profiles.
Collapse
Affiliation(s)
- Suwanan Denchai
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suppached Sasomsin
- Innovation & Winemaking Division, Siam Winery Company Limited, Samut Sakhon 74000, Thailand;
| | | | - Thanitaporn Phuenpong
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Emerging Processes for Food Functionality Design Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
14
|
Cui D, Liu L, Zhang X, Lin L, Li X, Cheng T, Wei C, Zhang Y, Zhou Z, Li W, Zhang C. Using transcriptomics to reveal the molecular mechanism of higher alcohol metabolism in Saccharomyces cerevisiae. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Roldán-López D, Muñiz-Calvo S, Daroqui N, Knez M, Guillamón JM, Pérez-Torrado R. The potential role of yeasts in the mitigation of health issues related to beer consumption. Crit Rev Food Sci Nutr 2022; 64:3059-3074. [PMID: 36222026 DOI: 10.1080/10408398.2022.2129584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Food consumption of healthier products has become an essential trend in the food sector. This is also the case in beer, a biochemical process of transformation performed by yeast cells. More and more studies proclaim the need to reduce ethanol content in alcoholic drinks, certainly the most important health issue of beer consumption. In this review we gather key health issues related to beer consumption and the last advances regarding the use of yeast to attenuate those health problems. Furthermore, we have included the latest findings about the general positive impact of yeast in health as a consequence of its ability to biotransform polyphenolic compounds present in the wort, producing healthy compounds as hydroxytyrosol or melatonin, and its ability to perform as a probiotic driver. Besides, a group of population with chronic diseases as diabetes or celiac disease could take advantage of low carbohydrate or gluten-free beers, respectively. The role of yeast in beer production has been traditionally associated to its fermentative power. But here we have found a change in this dogma in the last years toward yeasts being a main driver to enhance healthy aspects of beer. The key findings are discussed and possible future directions are proposed.
Collapse
Affiliation(s)
- David Roldán-López
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Sara Muñiz-Calvo
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Noemi Daroqui
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Masa Knez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Jose Manuel Guillamón
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Roberto Pérez-Torrado
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| |
Collapse
|
16
|
Morula Tree: From Fruit to Wine through Spontaneous Fermentation and the Potential of Deriving Other Value-Added Products. Processes (Basel) 2022. [DOI: 10.3390/pr10091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sclerocarya birrea (Morula tree) is one of the indigenous trees bearing wild fruits with various applications in the African communities. Wine is a globally known beverage usually made from grapes; however, recently, other fruits, including wild fruits with a considerable amount of sugars, can be used for making wines. The marula fruit wine is also important in many communities for cultural activities and can be enjoyed by people of varying age groups depending on the age of the product. In recent years, there has been growing interest in shifting from traditional marula winemaking to developing technologies for the marula winemaking process and commercialisation. The process of marula winemaking is similar to the production of grape wines, which entails collection, selection and washing of the fruits; extraction of the juice and mashing; formation and removal of the scum; and ultimately spontaneous fermentation of the resulting juice. The new process in marula winemaking would take into consideration the use of starter cultures as either monoculture or mixed cultures developed from the native marula fruit microbiota and the pasteurisation of the juice. The main challenge or difficulty with marula is the extraction of sugar and other soluble solids from the pulp more than it is for the grapes. The other challenge confronting the sustainability of marula wine is the seasonality of the fruit and poor juice yield. It is therefore imperative to develop strategies to increase the juice yield without affecting the quality, to preserve the marula fruits to ensure the year-round presence of marula fruit wine in the markets and, consequently, to improve the income generation capacity of the households dependent on the product. In addition to achieving a high juice yield, it is imperative to ensure consistent quality wine products. This review gives an overview of the S. birrea subsp. caffra and the biochemical components of the fruits or juice. It also highlights the use of marula fruits for wine production in African communities. The potential economic sustainability of the marula fruit wine is explored, particularly in southern Africa, where the marula tree (Morula) is abundant and the marula fruit wine is popularly produced. The review also examines the opportunities, challenges and future prospects of the marula fruit wine.
Collapse
|
17
|
Microbial and Chemical Dynamics during Marula Wine Fermentation. BEVERAGES 2022. [DOI: 10.3390/beverages8030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Marula wine is traditionally produced through a spontaneous fermentation process and has a huge economic potential in Africa. The current study investigated the contributing microbiota and the metabolites produced during the wine fermentation process. Microbial communities were analyzed by selective cultivation and identified by biotyping and rDNA sequencing. Sugars and volatile compounds were determined with the high performance liquid chromatography and gas chromatography, respectively. Different Lactobacillus spp. were present throughout the fermentation process but dominated the earlier stages of fermentation, together with non-Saccharomyces yeasts, whereas Saccharomyces cerevisiae and acetic acid bacteria dominated the latter stages. Sucrose, glucose and fructose were detected during the early stages, while ethanol and butanol were present during the latter stages of fermentation. Interestingly, acetic acid and formic acid were detected in relatively high amounts at the latter stages of fermentation. Lactobacillus spp. and S. cerevisiae were identified as the primary contributing microbiota, and Acetobacter aceti and Acetobacter pasteuriannus were associated with the off taste and spoilage of the marula wine.
Collapse
|
18
|
Di Bella G, Porretti M, Albergamo A, Mucari C, Tropea A, Rando R, Nava V, Lo Turco V, Potortì AG. Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging. Foods 2022; 11:foods11142152. [PMID: 35885399 PMCID: PMC9322394 DOI: 10.3390/foods11142152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/07/2022] Open
Abstract
Traditional alcoholic beverages have always been part of the Mediterranean culture and, lately, they have been re-evaluated to valorize both the territory and local customs. In this study, the Amarena wine, a fortified wine included in the national list of the traditional agri-food products, was characterized during bottle aging for oenological parameters, chromaticity, volatiles, and inorganic elements. Then, experimental data were visually interpreted by a principal component analysis (PCA). PCA revealed that most of oenological parameters (i.e., alcoholic grade, total dry extract, sugars, organic acids, and phenolic compounds) had a scarce discriminating power. Additionally, ethyl esters were only present in younger products, while remaining at quite constant levels. Conversely, certain metals (i.e., Mg, Na, Mn, Zn, and Cu), chromatic properties, and pH differentiated older Amarena bottles from the younger counterpart. Particularly, acetaldehyde and furanic compounds proved to be valid aging markers. A sensorial analysis highlighted that fruity and floral odors and flavors characterized younger beverages, while dried fruity, nutty, and spicy notes were displayed by older products, along with the valuable attribute of “oxidized” typically observed in aged Sherry wines. Overall, this study may encourage the production and commercialization of the Amarena wine, thus preserving the cultural heritage of the Mediterranean area.
Collapse
Affiliation(s)
- Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, 98100 Messina, Italy; (G.D.B.); (R.R.); (V.N.); (V.L.T.); (A.G.P.)
| | - Miriam Porretti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98100 Messina, Italy;
| | - Ambrogina Albergamo
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, 98100 Messina, Italy; (G.D.B.); (R.R.); (V.N.); (V.L.T.); (A.G.P.)
- Correspondence:
| | - Claudio Mucari
- Fondazione Albatros—ITS Agroalimentare, 98100 Messina, Italy;
| | - Alessia Tropea
- Department of Research and Internationalization, University of Messina, 98100 Messina, Italy;
| | - Rossana Rando
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, 98100 Messina, Italy; (G.D.B.); (R.R.); (V.N.); (V.L.T.); (A.G.P.)
| | - Vincenzo Nava
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, 98100 Messina, Italy; (G.D.B.); (R.R.); (V.N.); (V.L.T.); (A.G.P.)
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, 98100 Messina, Italy; (G.D.B.); (R.R.); (V.N.); (V.L.T.); (A.G.P.)
| | - Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Images Sciences (BIOMORF), University of Messina, 98100 Messina, Italy; (G.D.B.); (R.R.); (V.N.); (V.L.T.); (A.G.P.)
| |
Collapse
|
19
|
Abstract
Wine produced by fermentation of Chestnut rose (Rosa roxburghii) hips, known as cili (Chinese-Mandarin), in Guizhou province, and other places in China is becoming popular but there is limited knowledge of suitable yeast strains for its production. In this study, we first investigated the oenological properties of six commercial S. cerevisiae yeast strains (X16, F33, SH12, GV107, S102, RMS2), one commercial Saccharomyces cerevisiae var. bayanus (S103), one commercial, non-Saccharomyces yeast strain, Torulaspora delbrueckii Prelude, and one indigenous S. cerevisiae strain, CZ, for cili wine fermentation. We measured the key traits of each of the yeast strains, viz., sulfite resistance, flocculation, hydrogen sulfide production capacity, fermentation rate, and yeast growth curves. Subsequently, we measured the resultant wine characteristics, viz., pH, alcohol content, residual sugar, titratable acidity, volatile acidity, ascorbic acid content and headspace volatile compounds. The overall suitability of each yeast type was evaluated using a multi-factor, unweighted, scorecard. On that basis, RMS2 was the most suitable, and closely followed by CZ and X16. This study is the first comparative evaluation of yeasts for cili wine production and provides a preliminary guide for their selection.
Collapse
|
20
|
New Insights into the Origin of Volatile Sulfur Compounds during Wine Fermentation and Their Evolution during Aging. FERMENTATION 2022. [DOI: 10.3390/fermentation8040139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Volatile sulfur compounds (VSCs) are associated with unpleasant reductive aromas and are responsible for an important reduction in wine quality, causing major economic losses. Understanding the origin of these compounds in wine remains a challenge, as their formation and further evolution during winemaking can involve both chemical and biological reactions. Comparing the VSCs profile (i) of fermenting synthetic grape juices supplemented with a selected VSC (eight compounds tested) and incubated in presence or absence of yeast, and (ii) during storage of wines under an accelerated aging procedure, allowed us to elucidate the chemical and metabolic connections between VSCs during fermentation and aging. Yeast metabolism, through the Ehrlich pathway and acetylation reactions, makes an important contribution to the formation of compounds such as methionol, 3-methylthiopropionate, 3-methylthiopropylacetate, 3-mercaptopropanol, 2-mercaptoethanol and thioesters. By contrast, chemical reactions are responsible for interconversions between thiols and disulfides, the formation of thiols from thioesters or, more surprisingly, the formation of ethylthiopropanol from methionol during fermentation. During aging, variations in heavy VSC concentrations, such as an increase in 3-methylthiopropylacetate and a decrease in ethyl-3-methylthiopropionate formation, were evidenced. Overall, this study highlights that it is essential to consider both yeast metabolism and the high chemical reactivity of VSCs to understand their formation and evolution during winemaking.
Collapse
|
21
|
Yang Y, Zhong H, Yang N, Zhu D, Li J, Yang Z, Yang T. Effects of the proteins of indica rice and indica waxy rice on the formation of volatiles of sweet rice wine. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yurong Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Haiyan Zhong
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Ning Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
| | - Dongcai Zhu
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| | - Jie Li
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| | - Zhilong Yang
- Xiangjiao Liquor Industry Co. Ltd. Shaoyang 422000 China
| | - Tao Yang
- College of Food Science and Engineering Central South University of Forestry and Technology Changsha 410004 China
- Lidu Liquor Industry Co. Ltd. Nanchang 331725 China
| |
Collapse
|
22
|
Modulation of Volatile Thiol Release during Fermentation of Red Musts by Wine Yeast. Processes (Basel) 2022. [DOI: 10.3390/pr10030502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
During the alcoholic fermentation of grape sugars, wine yeast produces a range of secondary metabolites that play a critical role in the aroma profile of wines. One of the most impactful yeast-modified compound families, particularly in white wines, are the ‘fruity’ polyfunctional thiols, which include 3-mercaptohexan-1-ol (3-MH) and 4-mercapto-4-methylpentan-2-one (4-MMP). While the formation and stylistic contribution of these thiols have been extensively researched in white wines, little is known about the conditions leading to their formation in red wines. In this study, we explored the ability of yeast strains to modulate the release of these aroma compounds during the fermentation of two red musts. In laboratory-scale Pinot Noir fermentations, the formation of 3-MH strongly correlated with yeast β-lyase activity, particularly with the presence of certain genotypes of the flavour-releasing gene IRC7. Subsequent production of Grenache wine at the pilot scale, with detailed compositional and sensory analysis, was undertaken to confirm laboratory-scale observations. A commercial wine strain used for expressing ‘fruity’ thiols in Sauvignon Blanc was shown to produce wines that exhibited more intense red fruit aromas. These results reveal an opportunity for winemakers to shape red wine aroma and flavour by using yeasts that might typically be considered for white wine production.
Collapse
|
23
|
Chemical Composition and Polyphenolic Compounds of Red Wines: Their Antioxidant Activities and Effects on Human Health—A Review. BEVERAGES 2021. [DOI: 10.3390/beverages8010001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Red wine, an alcoholic beverage is composed of a spectrum of complex compounds such as water, alcohol, glycerol, organic acid, carbohydrates, polyphenols, and minerals as well as volatile compounds. Major factors that affect the levels of phenolic compounds in red wines are the variety of grapes and the storage of the wines. Among the constituents of red wine, phenolic compounds play a crucial role in attributes including color and mouthfeel and confer beneficial properties on health. Most importantly, phenolic compounds such as flavanols, flavonols, flavanones, flavones, tannins, anthocyanins, hydroxycinnamic acids, hydroxybenzoic acids, and resveratrol can prevent the development of cardiovascular diseases, cancers, diabetes, inflammation, and some other chronic diseases.
Collapse
|
24
|
Tejuino, a Traditional Fermented Beverage: Composition, Safety Quality, and Microbial Identification. Foods 2021; 10:foods10102446. [PMID: 34681495 PMCID: PMC8535997 DOI: 10.3390/foods10102446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
This study aims to analyze the chemical and microbial composition and characterize volatile compounds from the artisanal and commercial Tejuino beverage. For this, eight samples are analyzed (four artisanal and four commercial). The chemical and microbiological quality is determined by standard methods, and volatile compounds are determined by solid-phase microextraction. Overall, the physicochemical composition and microbiological quality are higher for artisanal Tejuino (p < 0.05). The pH values were 3.20 and 3.62, and 0.76 and 0.46 meq of lactic acid for artisanal and commercial Tejuino, respectively. With volatile compounds analyzed, esters, benzenes, and aldehydes were predominant; meanwhile, ethanol was a volatile compound with the highest concentration for all samples. Saccharomyces cerevisiae and Limosilactobacillus fermentum were identified in artisanal Tejuino; yeasts of the Pichia genera and Lactiplantibacillus plantarum, for commercial Tejuino, and Enterococcus genus were identified in both samples. The characterization of both types of Tejuino allows us to update the information available on this important Mexican beverage. In addition, the isolation of lactic acid bacteria, as representative bacteria of both drinks, offers an area of opportunity to know the potential functionality of these bacteria in traditional fermented products.
Collapse
|