1
|
Alotaibi KM, Alkhamees AA, Badjah Hadj Ahmed AY, Aqel A, Alswieleh AM. Innovative Silica Acorn Core-Shell Nanostructures: Morphological Control and Applications in Chromatography. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27606-27616. [PMID: 39693051 DOI: 10.1021/acs.langmuir.4c04046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
This study introduces the synthesis and characterization of advanced silica core-shell nanostructures, with an emphasis on the innovative Si-ACS (Silica Acorn Core-Shell) design and its modified counterparts. Employing the classic Stöber method, SiCore particles were first produced, followed by the creation of the acorn-like Si-ACS structures. A key aspect of this research is the exploration of the effects of CTAB and TEOS concentrations on the morphology and properties of the silica shells. The study reveals that surfactant concentration influences shell morphology from corn-like to uniformly thin structures, as well as the shell thickness. Specifically, increasing the CTAB concentration from 45.8 mM to 166.9 mM increased the silica shell thickness from 160 to 280 nm, demonstrating the significant impact of surfactant concentration on shell formation. Si-ACS particles exhibited a surface area of 55.54 m2/g and a pore volume of 0.64 cm3/g, as evidenced by BET measurements, indicating successful mesopore formation critical for catalytic and adsorption applications. The materials were further modified with cholesterol and tetraethyl pentaamine (TEPA), which was confirmed by FT-IR analysis. Additionally, the study demonstrates the application of these functionalized nanostructures as chromatographic columns. In particular, the dual-mode interactions of Si-ACS-CHOL-TEPA significantly improve the separation of phthalate esters, thereby highlighting the potential of these materials in advanced analytical and biotechnological applications.
Collapse
Affiliation(s)
- Khalid M Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| | - Anfal A Alkhamees
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Ahmad Aqel
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
2
|
Scriba GKE. Update on chiral recognition mechanisms in separation science. J Sep Sci 2024; 47:e2400148. [PMID: 38772711 DOI: 10.1002/jssc.202400148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/23/2024]
Abstract
The stereospecific analysis of chiral molecules is an important issue in many scientific fields. In separation sciences, this is achieved via the formation of transient diastereomeric complexes between a chiral selector and the selectand enantiomers driven by molecular interactions including electrostatic, ion-dipole, dipole-dipole, van der Waals or π-π interactions as well as hydrogen or halogen bonds depending on the nature of selector and selectand. Nuclear magnetic resonance spectroscopy and molecular modeling methods are currently the most frequently applied techniques to understand the selector-selectand interactions at a molecular level and to draw conclusions on the chiral separation mechanism. The present short review summarizes some of the recent achievements for the understanding of the chiral recognition of the most important chiral selectors combining separation techniques with molecular modeling and/or spectroscopic techniques dating between 2020 and early 2024. The selectors include polysaccharide derivatives, cyclodextrins, macrocyclic glycopeptides, proteins, donor-acceptor type selectors, ion-exchangers, crown ethers, and molecular micelles. The application of chiral ionic liquids and chiral deep eutectic solvents, as well as further selectors, are also briefly addressed. A compilation of all published literature on chiral selectors has not been attempted.
Collapse
Affiliation(s)
- Gerhard K E Scriba
- Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
3
|
Nan Y, Zheng P, Cheng M, Zhao R, Jia H, Liang Q, Li Y, Bao JJ. Enhancement of chiral drugs separation by a novel adjustable gravity mediated capillary electrophoresis combined with sulfonic propyl ether β-CD polymer. Anal Chim Acta 2023; 1279:341781. [PMID: 37827633 DOI: 10.1016/j.aca.2023.341781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 10/14/2023]
Abstract
A water-soluble negative sulfonic propyl ether β-CD polymer (SPE-β-CDP) to be used as chiral selector in capillary electrophoresis (CE) was polymerized. The sulfonic substitution degree of each β-CD in SPE-β-CDP was statistically homogenized. The only one negative peak in electrophoretogram with indirect ultraviolate method proved its uniformity of electrophoretic behavior. There were 7.12 sulfonic substitution in β-CD unit and 164 μmole β-CD units in each gram of SPE-β-CDP, which corresponded a molecular weight of 7000 or more. Compared with monomer, SPE-β-CDP was lower effect on electrical current of CE, indicating a high concentration of SPE-β-CDP could be added. Its separation ability was verified by 12 chiral drugs. SPE-β-CDP also showed advantages of good water solubility, easy preparation and recovery to reduce the overall cost. However, five of 12 chiral drugs were hardly to be fully separated which was normal for any kind of chiral selector. A newly adjustable gravity mediated capillary electrophoresis (AGM-CE) technology was proposed and combined with SPE-β-CDP to enhance the chiral separation efficiencies of propranolol, salbutamol, omeprazole, ofloxacin and phenoxybenzamine which were markedly improved to 3.02, 1.17, 7.63, 4.14, and 2.81, respectively. Furthermore, its gradient mode (AGMg-CE) was also used to improve resolution through utilizing the zero mobility point, at which the effective apparent mobility of one racemate was zero. Resolutions of five chiral drugs were significantly improved, especially resolution of carvedilol changed from 0.43 to 1.0. These indicated SPE-β-CDP as chiral selector, AGM-CE and AGMg-CE as new CE technologies had a great potential in chiral separation.
Collapse
Affiliation(s)
- Yaqin Nan
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Pingyi Zheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengqi Cheng
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Ran Zhao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Haijiao Jia
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Qinggang Liang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Youxin Li
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - James J Bao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China; Biomics Inc., DE, 17902, USA.
| |
Collapse
|
4
|
Ibrahim AE, El Gohary NA, Aboushady D, Samir L, Karim SEA, Herz M, Salman BI, Al-Harrasi A, Hanafi R, El Deeb S. Recent advances in chiral selectors immobilization and chiral mobile phase additives in liquid chromatographic enantio-separations: A review. J Chromatogr A 2023; 1706:464214. [PMID: 37506464 DOI: 10.1016/j.chroma.2023.464214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
For decades now, the separation of chiral enantiomers of drugs has been gaining the interest and attention of researchers. In 1991, the first guidelines for development of chiral drugs were firstly released by the US-FDA. Since then, the development in chromatographic enantioseparation tools has been fast and variable, aiming at creating a suitable environment where the physically and chemically identical enantiomers can be separated. Among those tools, the immobilization of chiral selectors (CS) on different stationary phases and the chiral mobile phase additives (CMPA) which have been progressed and studied extensively. This review article highlights the major advances in immobilization of CS together with their different recognition mechanisms as well as CMPA as a cheaper and successful alternative for chiral stationary phases. Moreover, the role of molecular modeling tool as a pre-step in the choice of CS for evaluating possible interactions with different ligands has been pointed up. Illustrations of reported methods and updates for immobilized CS and CMPA have been included.
Collapse
Affiliation(s)
- Adel Ehab Ibrahim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt; Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Nesrine Abdelrehim El Gohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Dina Aboushady
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Liza Samir
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Shereen Ekram Abdel Karim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Magy Herz
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Baher I Salman
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Sultanate of Oman
| | - Rasha Hanafi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig 38092, Germany; Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
5
|
Puyathorn N, Tamdee P, Sirirak J, Okonogi S, Phaechamud T, Chantadee T. Computational Insight of Phase Transformation and Drug Release Behaviour of Doxycycline-Loaded Ibuprofen-Based In-Situ Forming Gel. Pharmaceutics 2023; 15:2315. [PMID: 37765285 PMCID: PMC10537905 DOI: 10.3390/pharmaceutics15092315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
This research investigates the gel formation behaviour and drug-controlling performance of doxycycline-loaded ibuprofen-based in-situ forming gels (DH-loaded IBU-based ISGs) for potential applications in periodontal treatment. The investigation begins by exploring the physical properties and gel formation behaviour of the ISGs, with a particular focus on determining their sustained release capabilities. To gain a deeper understanding of the molecular interactions and dynamics within the ISGs, molecular dynamic (MD) simulations are employed. The effects of adding IBU and DH on reducing surface tension and water tolerance properties, thus affecting molecular properties. The phase transformation phenomenon is observed around the interface, where droplets of ISGs move out to the water phase, leading to the precipitation of IBU around the interface. The optimization of drug release profiles ensures sustained local drug release over seven days, with a burst release observed on the first day. Interestingly, different organic solvents show varying abilities to control DH release, with dimethyl sulfoxide (DMSO) demonstrating superior control compared to N-Methyl-2-pyrrolidone (NMP). MD simulations using AMBER20 software provide valuable insights into the movement of individual molecules, as evidenced by root-mean-square deviation (RMSD) values. The addition of IBU to the system results in the retardation of IBU molecule movement, particularly evident in the DMSO series, with the diffusion constant value of DH reducing from 1.2452 to 0.3372 and in the NMP series from 0.3703 to 0.2245 after adding IBU. The RMSD values indicate a reduction in molecule fluctuation of DH, especially in the DMSO system, where it decreases from over 140 to 40 Å. Moreover, their radius of gyration is influenced by IBU, with the DMSO system showing lower values, suggesting an increase in molecular compactness. Notably, the DH-IBU configuration exhibits stable pairing through H-bonding, with a higher amount of H-bonding observed in the DMSO system, which is correlated with the drug retardation efficacy. These significant findings pave the way for the development of phase transformation mechanistic studies and offer new avenues for future design and optimization formulation in the ISG drug delivery systems field.
Collapse
Affiliation(s)
- Napaphol Puyathorn
- Programme of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
| | - Poomipat Tamdee
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Jitnapa Sirirak
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand;
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Takron Chantadee
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM Group), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
de Paula Lima I, Polycarpo Valle S, de Oliveira MAL, de Carvalho Marques FF, Antonio Simas Vaz F. Monolithic stationary phases preparation for use in chromatographic and electromigration techniques: the state-of-the-art. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
7
|
Chromatographic supports for enantioselective liquid chromatography: Evolution and innovative trends. J Chromatogr A 2022; 1684:463555. [DOI: 10.1016/j.chroma.2022.463555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022]
|
8
|
Biomimetic Self-Assembled Chiral Inorganic Nanomaterials: A New Strategy for Solving Medical Problems. Biomimetics (Basel) 2022; 7:biomimetics7040165. [PMID: 36278722 PMCID: PMC9624310 DOI: 10.3390/biomimetics7040165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/02/2022] Open
Abstract
The rapid expansion of the study of chiral inorganic structures has led to the extension of the functional boundaries of inorganic materials. Nature-inspired self-assembled chiral inorganic structures exhibit diverse morphologies due to their high assembly efficiency and controlled assembly process, and they exhibit superior inherent properties such as mechanical properties, chiral optical activity, and chiral fluorescence. Although chiral self-assembled inorganic structures are becoming more mature in chiral catalysis and chiral optical regulation, biomedical research is still in its infancy. In this paper, various forms of chiral self-assembled inorganic structures are summarized, which provides a structural starting point for various applications of chiral self-assembly inorganic structures in biomedical fields. Based on the few existing research statuses and mechanism discussions on the chiral self-assembled materials-mediated regulation of cell behavior, molecular probes, and tumor therapy, this paper provides guidance for future chiral self-assembled structures to solve the same or similar medical problems. In the field of chiral photonics, chiral self-assembled structures exhibit a chirality-induced selection effect, while selectivity is exhibited by chiral isomers in the medical field. It is worth considering whether there is some correspondence or juxtaposition between these phenomena. Future chiral self-assembled structures in medicine will focus on the precise treatment of tumors, induction of soft and hard tissue regeneration, explanation of the biochemical mechanisms and processes of its medical effects, and improvement of related theories.
Collapse
|
9
|
Liu Y, Zhang P, Zhang L, Wang Y, Li J, Liu Y, Ji L, Yu H. Controlled helicity inversion, selective enantiomer release, and methanol recognition in azobenzene gel. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Teng Y, Gu C, Chen Z, Jiang H, Xiong Y, Liu D, Xiao D. Advances and applications of chiral resolution in pharmaceutical field. Chirality 2022; 34:1094-1119. [PMID: 35676772 DOI: 10.1002/chir.23453] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/07/2022] [Accepted: 04/12/2022] [Indexed: 11/07/2022]
Abstract
The attention to chiral drugs has been raised to an unprecedented level as drug discovery and development strategies grow rapidly. However, separation of enantiomers is still a huge task, which leads to an increasing significance to equip a wider range of expertise in chiral separation science to meet the current and future challenges. In the last few decades, remarkable progress of chiral resolution has been achieved. This review summarizes and classifies chiral resolution methods in analytical scale and preparative scale systematically and comprehensively, including crystallization-based method, inclusion complexation, chromatographic separation, capillary electrophoresis, kinetic resolution, liquid-liquid extraction, membrane-based separation, and especially one bold new progress based on chiral-induced spin selectivity theory. The advances and recent applications will be presented in detail, in which the contents may bring more thinking to wide-ranging readers in various professional fields, from analytical chemistry, pharmaceutical chemistry, natural medicinal chemistry, to manufacturing of drug production.
Collapse
Affiliation(s)
- Yan Teng
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Chenglu Gu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Zhuhui Chen
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Hui Jiang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yue Xiong
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
| | - Dong Liu
- Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, School of Biological and Pharmaceutical Engineering, West Anhui University, Liu'an, China
| | - Deli Xiao
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing, China
- Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
11
|
Chao H, Qiu L, Zhou X, Cui P, Wang C, Hu H, Jiang P, Shi H, Xuan Y, Wang J. Separation of ofloxacin enantiomers by CE with fluorescence detection using DNA oligonucleotides as chiral selectors. J Sep Sci 2022; 45:2699-2707. [PMID: 35544319 DOI: 10.1002/jssc.202200209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
This study used CE with fluorescence detection- and partial-filling mode-based method for chiral separation of ofloxacin. The DNA oligonucleotides with different base sequences were studied as potential chiral selectors including DNA tetrahedron, G-quadruplex, and G-riched double-strand DNA. Under the optimized conditions, all the DNA chiral selectors exhibited excellent chiral separation capabilities with a resolution higher than 1.5. The electrophoretic behavior of the ofloxacin enantiomer might result from the intermediate conjugate with different stabilities between chiral selectors and analytes by a combination of the hydrogen bond and spatial recognition structure. Moreover, satisfactory repeatability regarding run-to-run and interday repeatability was obtained, and all the RSD values of migration times and resolutions were below 4% (n = 6). Conclusively, both spatial structure and arrangement of the G bases potentiated the chiral separation capability of DNA for ofloxacin enantiomer. This work offered a stepping stone for enantioseparation using DNA as chiral selectors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hufei Chao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xinpei Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Honglei Shi
- Wujin Hospital Affiliated with Jiangsu University, Changzhou, Jiangsu, 213017, P. R. China.,The Wujin Clinical College of Xuzhou Medical University, Changzhou, Jiangsu, 213017, P. R. China
| | - Yang Xuan
- Key Lab of Biotechnology and Bioresources Utilization of Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, 116600, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| |
Collapse
|
12
|
Sharaf YA, El Deeb S, Ibrahim AE, Al-Harrasi A, Sayed RA. Two Green Micellar HPLC and Mathematically Assisted UV Spectroscopic Methods for the Simultaneous Determination of Molnupiravir and Favipiravir as a Novel Combined COVID-19 Antiviral Regimen. Molecules 2022; 27:2330. [PMID: 35408729 PMCID: PMC9000667 DOI: 10.3390/molecules27072330] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/17/2022] Open
Abstract
Following the spread of the COVID-19 pandemic crisis, a race was initiated to find a successful regimen for postinfections. Among those trials, a recent study declared the efficacy of an antiviral combination of favipiravir (FAV) and molnupiravir (MLP). The combined regimen helped in a successful 60% eradication of the SARS-CoV-2 virus from the lungs of studied hamster models. Moreover, it prevented viral transmission to cohosted sentinels. Because both medications are orally bioavailable, the coformulation of FAV and MLP can be predicted. The developed study is aimed at developing new green and simple methods for the simultaneous determination of FAV and MLP and then at their application in the study of their dissolution behavior if coformulated together. A green micellar HPLC method was validated using an RP-C18 core-shell column (5 μm, 150 × 4.6 mm) and an isocratic mixed micellar mobile phase composed of 0.1 M SDS, 0.01 M Brij-35, and 0.02 M monobasic potassium phosphate mixture and adjusted to pH 3.1 at 1.0 mL min-1 flow rate. The analytes were detected at 230 nm. The run time was less than five minutes under the optimized chromatographic conditions. Four other multivariate chemometric model methods were developed and validated, namely, classical least square (CLS), principal component regression (PCR), partial least squares (PLS-1), and genetic algorithm-partial least squares (GA-PLS-1). The developed models succeeded in resolving the great similarity and overlapping in the FAV and MLP UV spectra unlike the traditional univariate methods. All methods were organic solvent-free, did not require extraction or derivatization steps, and were applied for the construction of the simultaneous dissolution profile for FAV tablets and MLP capsules. The methods revealed that the amount of the simultaneously released cited drugs increases up until reaching a plateau after 15 and 20 min for FAV and MLP, respectively. The greenness was assessed on GAPI and found to be in harmony with green analytical chemistry concepts.
Collapse
Affiliation(s)
- Yasmine Ahmed Sharaf
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt; (Y.A.S.); (R.A.S.)
| | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (A.E.I.); (A.A.-H.)
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (A.E.I.); (A.A.-H.)
- Analytical Chemistry Department, Faculty of Pharmacy, Port-Said University, Port Said 42526, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman; (A.E.I.); (A.A.-H.)
| | - Rania Adel Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44511, Egypt; (Y.A.S.); (R.A.S.)
| |
Collapse
|