1
|
Abstract
Covering: January to December 2021This review covers the literature published in 2021 for marine natural products (MNPs), with 736 citations (724 for the period January to December 2021) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1425 in 416 papers for 2021), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of the number of authors, their affiliations, domestic and international collection locations, focus of MNP studies, citation metrics and journal choices is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
2
|
Gomes PWP, de Tralia Medeiros TC, Maimone NM, Leão TF, de Moraes LAB, Bauermeister A. Microbial Metabolites Annotation by Mass Spectrometry-Based Metabolomics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:225-248. [PMID: 37843811 DOI: 10.1007/978-3-031-41741-2_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Since the discovery of penicillin, microbial metabolites have been extensively investigated for drug discovery purposes. In the last decades, microbial derived compounds have gained increasing attention in different fields from pharmacognosy to industry and agriculture. Microbial metabolites in microbiomes present specific functions and can be associated with the maintenance of the natural ecosystems. These metabolites may exhibit a broad range of biological activities of great interest to human purposes. Samples from either microbial isolated cultures or microbiomes consist of complex mixtures of metabolites and their analysis are not a simple process. Mass spectrometry-based metabolomics encompass a set of analytical methods that have brought several improvements to the microbial natural products field. This analytical tool allows the comprehensively detection of metabolites, and therefore, the access of the chemical profile from those biological samples. These analyses generate thousands of mass spectra which is challenging to analyse. In this context, bioinformatic metabolomics tools have been successfully employed to accelerate and facilitate the investigation of specialized microbial metabolites. Herein, we describe metabolomics tools used to provide chemical information for the metabolites, and furthermore, we discuss how they can improve investigation of microbial cultures and interactions.
Collapse
Affiliation(s)
- Paulo Wender P Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Talita Carla de Tralia Medeiros
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Naydja Moralles Maimone
- Departamento de Ciências Exatas, Escola Superior de Agricultura 'Luiz de Queiroz', Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Tiago F Leão
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
| | - Luiz Alberto Beraldo de Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Anelize Bauermeister
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
3
|
Rivera-Chávez J, Ceapă CD, Figueroa M. Biological Dark Matter Exploration using Data Mining for the Discovery of Antimicrobial Natural Products. PLANTA MEDICA 2022; 88:702-720. [PMID: 35697058 DOI: 10.1055/a-1795-0562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of novel antimicrobials has significantly slowed down over the last three decades. At the same time, humans rely increasingly on antimicrobials because of the progressive antimicrobial resistance in medical practices, human communities, and the environment. Data mining is currently considered a promising option in the discovery of new antibiotics. Some of the advantages of data mining are the ability to predict chemical structures from sequence data, anticipation of the presence of novel metabolites, the understanding of gene evolution, and the corroboration of data from multiple omics technologies. This review analyzes the state-of-the-art for data mining in the fields of bacteria, fungi, and plant genomic data, as well as metabologenomics. It also summarizes some of the most recent research accomplishments in the field, all pinpointing to innovation through uncovering and implementing the next generation of antimicrobials.
Collapse
Affiliation(s)
- José Rivera-Chávez
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Corina-Diana Ceapă
- Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mario Figueroa
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
4
|
Fajardo-Hernández C, Khan FST, Flores-Bocanegra L, Prieto-Davó A, Wan B, Ma R, Qader M, Villanueva-Silva R, Martínez-Cárdenas A, López-Lobato MA, Hematian S, Franzblau SG, Raja HA, García-Contreras R, Figueroa M. Insights into the Chemical Diversity of Selected Fungi from the Tza Itzá Cenote of the Yucatan Peninsula. ACS OMEGA 2022; 7:12171-12185. [PMID: 35449929 PMCID: PMC9016812 DOI: 10.1021/acsomega.2c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cenotes are habitats with unique physical, chemical, and biological features. Unexplored microorganisms from these sinkholes represent a potential source of bioactive molecules. Thus, a series of cultivable fungi (Aspergillus spp. NCA257, NCA264, and NCA276, Stachybotrys sp. NCA252, and Cladosporium sp. NCA273) isolated from the cenote Tza Itzá were subjected to chemical, coculture, and metabolomic analyses. Nineteen compounds were obtained and tested for their antimicrobial potential against ESKAPE pathogens, Mycobacterium tuberculosis, and nontuberculous mycobacteria. In particular, phenylspirodrimanes from Stachybotrys sp. NCA252 showed significant activity against MRSA, MSSA, and mycobacterial strains. On the other hand, the absolute configuration of the new compound 17-deoxy-aspergillin PZ (1) isolated from Aspergillus sp. NCA276 was established via single-crystal X-ray crystallography. Also, the chemical analysis of the cocultures between Aspergillus and Cladosporium strains revealed the production of metabolites that were not present or were barely detected in the monocultures. Finally, molecular networking analysis of the LC-MS-MS/MS data for each fungus was used as a tool for the annotation of additional compounds, increasing the chemical knowledge on the corresponding fungal strains. Overall, this is the first systematic chemical study on fungi isolated from a sinkhole in Mexico.
Collapse
Affiliation(s)
- Carlos
A. Fajardo-Hernández
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Firoz Shah Tuglak Khan
- Department
of Chemistry and Biochemistry, University
of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Laura Flores-Bocanegra
- Department
of Chemistry and Biochemistry, University
of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Alejandra Prieto-Davó
- Unidad
de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán 97356, Mexico
| | - Baojie Wan
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Rui Ma
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Mallique Qader
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Rodrigo Villanueva-Silva
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Anahí Martínez-Cárdenas
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marian A. López-Lobato
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Shabnam Hematian
- Department
of Chemistry and Biochemistry, University
of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Scott G. Franzblau
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Rodolfo García-Contreras
- Departamento
de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mario Figueroa
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|