1
|
Molaei Yielzoleh F, Nikoofar K. Nano silicated-FeAl 2O 4 functionalized by DL-alaninium nitrate ionic liquid (FeAl 2O 4-SiO 2@[DL-Ala][NO 3]) as versatile promotor for aqua-mediated synthesis of spiro[chromenopyrazole-indene-triones and spiro[chromenopyrazole-indoline-diones. Sci Rep 2024; 14:16296. [PMID: 39009652 PMCID: PMC11251080 DOI: 10.1038/s41598-024-66750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
In this work, the spinel FeAl2O4 was prepared and functionalized step-by-step with silica and alaninium nitrate ionic liquid ([DL-Ala][NO3]) to produce a bio-based multi-layered nanostructure (nano FeAl2O4-SiO2@[DL-Ala][NO3]). The obtained magnetized inorganic-bioorganic nanohybrid characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating-sample magnetometry (VSM), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDAX), transmission electron microscopy (TEM), thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), X-ray fluorescence (XRF), and X-Ray diffraction (XRD) analysis. A facile synthesis of some tricyclic dihydro-spiro[chromeno[2,3-c]pyrazole-4,2'-indene]triones and dihydro-spiro[chromeno[2,3-c]pyrazole-4,3'-indoline]diones via domino four-component one-pot reaction of various hydrazine derivatives, ethyl acetoacetate, heterocyclic 1,2-ketones (ninhydrin, isatin, 5-bromoisatin) and cyclic 1,3-diketones (dimedone and 1,3-cyclohexanedine), examined in the presence of nano FeAl2O4-SiO2@[DL-Ala][NO3] nanohybrid in refluxing aqueous media, successfully. The multi-aspect characteristics of the nanohybrid which consist of magnetized inorganic and bioorganic parts, could be the reason of its special catalytic efficacy. The recovery and reusability of the FeAl2O4-SiO2@[DL-Ala][NO3] magnetized nanoparticles (MNPs) were performed in two runs without significant activity loss.
Collapse
Affiliation(s)
| | - Kobra Nikoofar
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran.
| |
Collapse
|
2
|
Blanes-Díaz A, Shohel M, Rice NT, Piedmonte I, McDonald MA, Jorabchi K, Kozimor SA, Bertke JA, Nyman M, Knope KE. Synthesis and Characterization of Cerium-Oxo Clusters Capped by Acetylacetonate. Inorg Chem 2024; 63:9406-9417. [PMID: 37792316 PMCID: PMC11134509 DOI: 10.1021/acs.inorgchem.3c02141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Indexed: 10/05/2023]
Abstract
Cerium-oxo clusters have applications in fields ranging from catalysis to electronics and also hold the potential to inform on aspects of actinide chemistry. Toward this end, a cerium-acetylacetonate (acac1-) monomeric molecule, Ce(acac)4 (Ce-1), and two acac1--decorated cerium-oxo clusters, [Ce10O8(acac)14(CH3O)6(CH3OH)2]·10.5MeOH (Ce-10) and [Ce12O12(OH)4(acac)16(CH3COO)2]·6(CH3CN) (Ce-12), were prepared and structurally characterized. The Ce(acac)4 monomer contains CeIV. Crystallographic data and bond valence summation values for the Ce-10 and Ce-12 clusters are consistent with both clusters having a mixture of CeIII and CeIV cations. Ce L3-edge X-ray absorption spectroscopy, performed on Ce-10, showed contributions from both CeIII and CeIV. The Ce-10 cluster is built from a hexameric cluster, with six CeIV sites, that is capped by two dimeric CeIII units. By comparison, Ce-12, which formed upon dissolution of Ce-10 in acetonitrile, consists of a central decamer built from edge sharing CeIV hexameric units, and two monomeric CeIII sites that are bound on the outer corners of the inner Ce10 core. Electrospray ionization mass spectrometry data for solutions prepared by dissolving Ce-10 in acetonitrile showed that the major ions could be attributed to Ce10 clusters that differed primarily in the number of acac1-, OH1-, MeO1-, and O2- ligands. Small angle X-ray scattering measurements for Ce-10 dissolved in acetonitrile showed structural units slightly larger than either Ce10 or Ce12 in solution, likely due to aggregation. Taken together, these results suggest that the acetylacetonate supported clusters can support diverse solution-phase speciation in organic solutions that could lead to stabilization of higher order cerium containing clusters, such as cluster sizes that are greater than the Ce10 and Ce12 reported herein.
Collapse
Affiliation(s)
- Anamar Blanes-Díaz
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Mohammad Shohel
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Natalie T. Rice
- Los
Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Ida Piedmonte
- Los
Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Morgan A. McDonald
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Kaveh Jorabchi
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - Stosh A. Kozimor
- Los
Alamos National Laboratory (LANL), P.O. Box 1663, Los Alamos, New Mexico 87545, United States
| | - Jeffery A. Bertke
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| | - May Nyman
- Department
of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Karah E. Knope
- Department
of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C. 20057, United States
| |
Collapse
|
3
|
Endeşav Ç, Yalçın B, Şimşek C, Erbil C. Tuning Compressive Young's Moduli and Antibacterial Activities of Alginate/Poly( N-isopropylacrylamide) Hydrogels with Laponite Layers and Cerium Ions. ACS OMEGA 2022; 7:35792-35804. [PMID: 36249381 PMCID: PMC9558251 DOI: 10.1021/acsomega.2c03937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Hybrid hydrogels containing alginate (Alg) and poly(N-isopropylacrylamide) (PNIPAAm) chains as natural and synthetic components, respectively, were crosslinked using double and triple pairs of the crosslinkers Ce3+/Ce4+, laponite (LP) RD, and N,N'-methylenebisacrylamide (BIS). (Alg/PNIPAAm)-Ce3+ and (Alg/PNIPAAm-PNIPAAm)-Ce3+ double- and triple-network structures were prepared using multivalent cerium ions (Ce3+), multifunctional laponite layers (L), and/or neutral tetrafunctonal BIS molecules (B). Compressive Young's moduli, E, were tuned by the type/concentration of crosslinkers and crosslinking procedures and the concentration of Alg chains. The antibacterial activity of positively charged ions and molecules is due to the electrostatic attraction with the negatively charged bacterial cell walls. In the current study, we report the antibacterial activity on Escherichia coli of Ce3+ ions in the absence and presence of gentamicin sulfate (GS) for double and triple networks. Nonbacterial areas, which are called inhibition zones, around the disks, and compressive E moduli of the single and double PNIPAAm and Alg/PNIPAAm networks crosslinked by LP RD and containing Ce3+/Ce4+ions in free and ionically bonded states, respectively, were higher than those of the ones crosslinked with BIS. Moreover, BIS- and LP RD-crosslinked single PNIPAAm hydrogels displayed larger inhibition zones than those of Alg/PNIPAAm hybrids, supporting the antibacterial activity of free Ce3+/Ce4+ ions diffused together with GS molecules. On the other hand, antibacterial activities of GS + Ce3+-loaded triple networks were much lower than those of their double counterparts because the increase in the structural complexity reduced the co-emission of antibacterial agents.
Collapse
Affiliation(s)
- Çiçek Endeşav
- Faculty
of Science and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, TR34469, Turkey
| | - Bestenur Yalçın
- Department
of Medical Laboratory Techniques Istanbul, Bahcesehir University Vocational School of Health Services, Istanbul, TR34353, Turkey
| | - Ceyda Şimşek
- Faculty
of Science and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, TR34469, Turkey
| | - Candan Erbil
- Faculty
of Science and Letters, Department of Chemistry, Istanbul Technical University, Istanbul, TR34469, Turkey
| |
Collapse
|
4
|
Shen J, Lauterbach S, Hess C. Rational Design of Mesoporous CuO-CeO 2 Catalysts for NH 3-SCR Applications Guided by Multiple In Situ Spectroscopies. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43407-43420. [PMID: 36111672 DOI: 10.1021/acsami.2c13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Efficient nontoxic catalysts for low-temperature NH3 selective catalytic reduction (NH3-SCR) applications are of great interest. Owing to their promising redox and low-temperature activity, we prepared CuO-CeO2 catalysts on a mesoporous SBA-15 support using targeted solid-state impregnation (SSI), guided by multiple in situ spectroscopy. The use of template P123 allowed dedicated modification of the surface properties of the SBA-15 matrix, resulting in a changed reactivity behavior of the metal precursors during the calcination process. To unravel the details of the transformation of the precursors to the final catalyst material, we applied in situ diffuse reflectance infrared Fourier transform (DRIFT), UV-visible (UV-vis), and Raman spectroscopies as well as online Fourier transform infrared (FTIR) monitoring of the gas-phase composition, in addition to ex situ surface, porosity, and structural analysis. The in situ analysis reveals two types of nitrate decomposition mechanisms: a nitrate-bridging route leading to the formation of a CuO-CeO2 solid solution with increased low-temperature NH3-SCR activity, and a hydrolysis route, which facilitates the formation of binary oxides CuO + CeO2 showing activity over a broader temperature window peaking at higher temperatures. Our findings demonstrate that a detailed understanding of catalytic performance requires a profound knowledge of the calcination step and that the use of in situ analysis facilitates the rational design of catalytic properties.
Collapse
Affiliation(s)
- Jun Shen
- Eduard Zintl Institute of Inorganic and Physical Chemistry, TU Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| | - Stefan Lauterbach
- Institut für Angewandte Geowissenschaften, TU Darmstadt, Schnittspahnstr. 9, 64287 Darmstadt, Germany
| | - Christian Hess
- Eduard Zintl Institute of Inorganic and Physical Chemistry, TU Darmstadt, Alarich-Weiss-Str. 8, 64287 Darmstadt, Germany
| |
Collapse
|
5
|
Sriratanasak N, Wattanathana W, Chanvorachote P. 6,6′-((Methylazanedyl)bis(methylene))bis(2,4-dimethylphenol) Induces Autophagic Associated Cell Death through mTOR-Mediated Autophagy in Lung Cancer. Molecules 2022; 27:molecules27196230. [PMID: 36234769 PMCID: PMC9572635 DOI: 10.3390/molecules27196230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is the multistep mechanism for the elimination of damaged organelles and misfolded proteins. This mechanism is preceded and may induce other program cell deaths such as apoptosis. This study unraveled the potential pharmacological effect of 24MD in inducing the autophagy of lung cancer cells. Results showed that 24MD was concomitant with autophagy induction, indicating by autophagosome staining and the induction of ATG5, ATG7 and ubiquitinated protein, p62 expression after 12-h treatment. LC3-I was strongly conversed to LC3-II, and p62 was downregulated after 24-h treatment. The apoptosis-inducing activity was found after 48-h treatment as indicated by annexin V-FITC/propidium iodide staining and the activation of caspase-3. From a mechanistic perspective, 24-h treatment of 24MD at 60 μM substantially downregulated p-mTOR. Meanwhile, p-PI3K and p-Akt were also suppressed by 24MD at concentrations of 80 and 100 μM, respectively. We further confirmed m-TOR-mediated autophagic activity by comparing the effect of 24MD with rapamycin, a potent standard mTOR1 inhibitor through Western blot and immunofluorescence assays. Although 24MD could not suppress p-mTOR as much as rapamycin, the combination of rapamycin and 24MD could increase the mTOR suppressive activity and LC3 activation. Changing the substituent groups (R groups) from dimethylphenol to ethylphenol in EMD or changing methylazanedyl to cyclohexylazanedyl in 24CD could only induce apoptosis activity but not autophagic inducing activity. We identified 24MD as a novel compound targeting autophagic cell death by affecting mTOR-mediated autophagy.
Collapse
Affiliation(s)
- Nicharat Sriratanasak
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Worawat Wattanathana
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence:
| |
Collapse
|