1
|
Saher S, Johnston S, Esther-Kelvin R, Pringle JM, MacFarlane DR, Matuszek K. Trimodal thermal energy storage material for renewable energy applications. Nature 2024; 636:622-626. [PMID: 39695206 DOI: 10.1038/s41586-024-08214-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/15/2024] [Indexed: 12/20/2024]
Abstract
The global aim to move away from fossil fuels requires efficient, inexpensive and sustainable energy storage to fully use renewable energy sources. Thermal energy storage materials1,2 in combination with a Carnot battery3-5 could revolutionize the energy storage sector. However, a lack of stable, inexpensive and energy-dense thermal energy storage materials impedes the advancement of this technology. Here we report the first, to our knowledge, 'trimodal' material that synergistically stores large amounts of thermal energy by integrating three distinct energy storage modes-latent, thermochemical and sensible. The eutectic mixture of boric and succinic acids undergoes a transition at around 150 °C, with a record high reversible thermal energy uptake of 394 ± 5% J g-1. We show that the transition involves melting of the boric acid component, which simultaneously undergoes dehydration into metaboric acid and water that dissolve into the liquid. Being retained in the liquid state allows the metaboric acid to readily rehydrate to re-form boric acid on cooling. Thermal stability is demonstrated over 1,000 heating-cooling cycles. The material is very low cost, environmentally friendly and sustainable. This combination of a solid-liquid phase transition and a chemical reaction demonstrated here opens new pathways in the development of high energy capacity materials.
Collapse
Affiliation(s)
- Saliha Saher
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Sam Johnston
- School of Chemistry, Monash University, Clayton, Victoria, Australia
| | | | - Jennifer M Pringle
- Institute for Frontier Materials, Deakin University, Burwood, Victoria, Australia
| | | | - Karolina Matuszek
- School of Chemistry, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
2
|
Chormey DS, Zaman BT, Kustanto TB, Erarpat Bodur S, Bodur S, Er EÖ, Bakırdere S. Deep eutectic solvents for the determination of endocrine disrupting chemicals. Talanta 2024; 268:125340. [PMID: 37948953 DOI: 10.1016/j.talanta.2023.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
The harmful effects of endocrine disrupting chemicals (EDCs) to humans and other organisms in the environment have been well established over the years, and more studies are ongoing to classify other chemicals that have the potential to alter or disrupt the regular function of the endocrine system. In addition to toxicological studies, analytical detection systems are progressively being improved to facilitate accurate determination of EDCs in biological, environmental and food samples. Recent microextraction methods have focused on the use of green chemicals that are safe for analytical applications, and present very low or no toxicity upon disposal. Deep eutectic solvents (DESs) have emerged as one of the viable alternatives to the conventional hazardous solvents, and their unique properties make them very useful in different applications. Notably, the use of renewable sources to prepare DESs leads to highly biodegradable products that mitigate negative ecological impacts. This review presents an overview of both organic and inorganic EDCs and their ramifications on human health. It also presents the fundamental principles of liquid phase and solid phase microextraction methods, and gives a comprehensive account of the use of DESs for the determination of EDCs in various samples.
Collapse
Affiliation(s)
- Dotse Selali Chormey
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye.
| | - Buse Tuğba Zaman
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Tülay Borahan Kustanto
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Neutec Pharmaceutical, Yıldız Technical University Teknopark, 34220, İstanbul, Turkiye
| | - Sezin Erarpat Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye
| | - Süleyman Bodur
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; İstinye University, Faculty of Pharmacy, Department of Analytical Chemistry, 34010, İstanbul, Turkiye; İstinye University, Scientific and Technological Research Application and Research Center, 34010, İstanbul, Turkiye
| | - Elif Özturk Er
- İstanbul Technical University, Department of Chemical Engineering, 34469, İstanbul, Turkiye
| | - Sezgin Bakırdere
- Yıldız Technical University, Department of Chemistry, 34220, İstanbul, Turkiye; Turkish Academy of Sciences (TÜBA), Vedat Dalokay Street, No: 112, 06670, Çankaya, 06670, Ankara, Turkiye.
| |
Collapse
|
3
|
Elderderi S, Bonnier F, Perse X, Byrne HJ, Yvergnaux F, Chourpa I, Elbashir AA, Munnier E. Label-Free Quantification of Nanoencapsulated Piperonyl Esters in Cosmetic Hydrogels Using Raman Spectroscopy. Pharmaceutics 2023; 15:1571. [PMID: 37376021 DOI: 10.3390/pharmaceutics15061571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Raman spectroscopy is a well-established technique for the molecular characterisation of samples and does not require extensive pre-analytical processing for complex cosmetic products. As an illustration of its potential, this study investigates the quantitative performance of Raman spectroscopy coupled with partial least squares regression (PLSR) for the analysis of Alginate nanoencapsulated Piperonyl Esters (ANC-PE) incorporated into a hydrogel. A total of 96 ANC-PE samples covering a 0.4% w/w-8.3% w/w PE concentration range have been prepared and analysed. Despite the complex formulation of the sample, the spectral features of the PE can be detected and used to quantify the concentrations. Using a leave-K-out cross-validation approach, samples were divided into a training set (n = 64) and a test set, samples that were previously unknown to the PLSR model (n = 32). The root mean square error of cross-validation (RMSECV) and prediction (RMSEP) was evaluated to be 0.142% (w/w PE) and 0.148% (w/w PE), respectively. The accuracy of the prediction model was further evaluated by the percent relative error calculated from the predicted concentration compared to the true value, yielding values of 3.58% for the training set and 3.67% for the test set. The outcome of the analysis demonstrated the analytical power of Raman to obtain label-free, non-destructive quantification of the active cosmetic ingredient, presently PE, in complex formulations, holding promise for future analytical quality control (AQC) applications in the cosmetics industry with rapid and consumable-free analysis.
Collapse
Affiliation(s)
- Suha Elderderi
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, P.O. Box 20, Wad Madani 21111, Sudan
| | - Franck Bonnier
- LVMH Recherche, 185 Avenue de Verdun, 45804 Saint Jean de Braye, France
| | - Xavier Perse
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Hugh J Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Camden Row, D08 CKP1 Dublin 8, Ireland
| | | | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France
| | - Abdalla A Elbashir
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan
| | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France
| |
Collapse
|
4
|
Elderderi S, Sacré PY, Wils L, Chourpa I, Elbashir AA, Hubert P, Byrne HJ, Boudesocque-Delaye L, Ziemons E, Bonnier F. Comparison of Vibrational Spectroscopic Techniques for Quantification of Water in Natural Deep Eutectic Solvents. Molecules 2022; 27:4819. [PMID: 35956767 PMCID: PMC9370017 DOI: 10.3390/molecules27154819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/22/2022] [Accepted: 07/23/2022] [Indexed: 11/17/2022] Open
Abstract
Vibrational spectroscopic techniques, i.e., attenuated total reflectance infrared (ATR-IR), near infrared spectroscopy (NIRS) and Raman spectroscopy (RS), coupled with Partial Least Squares Regression (PLSR), were evaluated as cost-effective label-free and reagent-free tools to monitor water content in Levulinic Acid/L-Proline (LALP) (2:1, mol/mol) Natural Deep Eutectic Solvent (NADES). ATR-IR delivered the best outcome of Root Mean Squared Error (RMSE) of Cross-Validation (CV) = 0.27% added water concentration, RMSE of Prediction (P) = 0.27% added water concentration and mean % relative error = 2.59%. Two NIRS instruments (benchtop and handheld) were also compared during the study, respectively yielding RMSECV = 0.35% added water concentration, RMSEP = 0.56% added water concentration and mean % relative error = 5.13% added water concentration, and RMECV = 0.36% added water concentration, RMSEP = 0.68% added water concentration and mean % relative error = 6.23%. RS analysis performed in quartz cuvettes enabled accurate water quantification with RMECV = 0.43% added water concentration, RMSEP = 0.67% added water concentration and mean % relative error = 6.75%. While the vibrational spectroscopic techniques studied have shown high performance in relation to reliable determination of water concentration, their accuracy is most likely related to their sensitivity to detect the LALP compounds in the NADES. For instance, whereas ATR-IR spectra display strong features from water, Levulinic Acid and L-Proline that contribute to the PLSR predictive models constructed, NIRS and RS spectra are respectively dominated by either water or LALP compounds, representing partial molecular information and moderate accuracy compared to ATR-IR. However, while ATR-IR instruments are common in chemistry and physics laboratories, making the technique readily transferable to water quantification in NADES, Raman spectroscopy offers promising potential for future development for in situ, sample withdrawal-free analysis for high throughput and online monitoring.
Collapse
Affiliation(s)
- Suha Elderderi
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Gezira, P.O. Box 20, Wad Madani 21111, Sudan
| | - Pierre-Yves Sacré
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Vibra-Santé HUB, University of Liège (ULiege), Avenue Hippocrate 15, 4000 Liège, Belgium; (P.-Y.S.); (P.H.); (E.Z.)
| | - Laura Wils
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (L.B.-D.)
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.)
| | - Abdalla A. Elbashir
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- Department of Chemistry, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan
| | - Philippe Hubert
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Vibra-Santé HUB, University of Liège (ULiege), Avenue Hippocrate 15, 4000 Liège, Belgium; (P.-Y.S.); (P.H.); (E.Z.)
| | - Hugh J. Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Camden Row, Dublin 8, D08 CKP1 Dublin, Ireland;
| | - Leslie Boudesocque-Delaye
- EA 7502 Synthèse et Isolement de Molécules BioActives (SIMBA), Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.W.); (L.B.-D.)
| | - Eric Ziemons
- Laboratory of Pharmaceutical Analytical Chemistry, CIRM, Vibra-Santé HUB, University of Liège (ULiege), Avenue Hippocrate 15, 4000 Liège, Belgium; (P.-Y.S.); (P.H.); (E.Z.)
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (S.E.); (I.C.)
| |
Collapse
|
5
|
Van Gheluwe L, Munnier E, Kichou H, Kemel K, Mahut F, Vayer M, Sinturel C, Byrne HJ, Yvergnaux F, Chourpa I, Bonnier F. Confocal Raman Spectroscopic Imaging for Evaluation of Distribution of Nano-Formulated Hydrophobic Active Cosmetic Ingredients in Hydrophilic Films. Molecules 2021; 26:7440. [PMID: 34946526 PMCID: PMC8707231 DOI: 10.3390/molecules26247440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
Film-forming systems are highly relevant to the topical administration of active ingredients (AI) to the body. Enhanced contact with the skin can increase the efficacy of delivery and penetration during prolonged exposure. However, after the evaporation of volatile solvents to form a thin film, the distribution of the ingredient should remain homogenous in order to ensure the effectiveness of the formula. This is especially critical for the use of hydrophobic molecules that have poor solubility in hydrophilic films. In order to address this concern, hydroxyphenethyl esters (PHE) of Punica granatum seed oil were prepared as a nanosuspension stabilised by poloxamers (NanoPHE). NanoPHE was then added to a formulation containing polyvinyl alcohol (PVA) as a film forming agent, Glycerol as a plasticiser and an antimicrobial agent, SepicideTM HB. Despite their reliability, reference methods such as high-performance liquid chromatography are increasingly challenged due to the need for consumables and solvents, which is contrary to current concerns about green industry in the cosmetics field. Moreover, such methods fail to provide spatially resolved chemical information. In order to investigate the distribution of ingredients in the dried film, Confocal Raman imaging (CRI) coupled to Non-negatively Constrained Least Squares (NCLS) analysis was used. The reconstructed heat maps from a range of films containing systematically varying PHE concentrations highlighted the changes in spectral contribution from each of the ingredients. First, using NCLS scores it was demonstrated that the distributions of PVA, Glycerol, SepicideTM HB and PHE were homogenous, with respective relative standard deviations (RSD) of 3.33%, 2.48%, 2.72% and 6.27%. Second, the respective relationships between ingredient concentrations in the films and their Raman responses, and the spectral abundance were established. Finally, a model for absolute quantification for PHE was be constructed using the percentage of spectral abundance. The prepared %w/w concentrations regressed against predicted %w/w concentrations, displaying high correlation (R2 = 0.995), while the Root Mean Squared Error (0.0869% w/w PHE) confirmed the precision of the analysis. The mean percent relative error of 3.75% indicates the accuracy to which the concentration in dried films could be determined, further supporting the suitability of CRI for analysis of composite solid film matrix. Ultimately, it was demonstrated that nanoformulation of hydrophobic PHE provides homogenous distribution in PVA based film-forming systems independent of the concentration of NanoPHE used in the formula.
Collapse
Affiliation(s)
- Louise Van Gheluwe
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (E.M.); (H.K.); (K.K.); (I.C.)
| | - Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (E.M.); (H.K.); (K.K.); (I.C.)
| | - Hichem Kichou
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (E.M.); (H.K.); (K.K.); (I.C.)
| | - Kamilia Kemel
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (E.M.); (H.K.); (K.K.); (I.C.)
| | - Frédéric Mahut
- UMR CNRS 7374-Université d’Orléans ICMN, 45071 Orléans, France; (F.M.); (M.V.); (C.S.)
| | - Marylène Vayer
- UMR CNRS 7374-Université d’Orléans ICMN, 45071 Orléans, France; (F.M.); (M.V.); (C.S.)
| | - Christophe Sinturel
- UMR CNRS 7374-Université d’Orléans ICMN, 45071 Orléans, France; (F.M.); (M.V.); (C.S.)
| | - Hugh J. Byrne
- FOCAS Research Institute, TU Dublin, City Campus, Kevin Street, Dublin 8, Ireland;
| | | | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (E.M.); (H.K.); (K.K.); (I.C.)
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes, Faculté de Pharmacie, Université de Tours, 31 Avenue Monge, 37200 Tours, France; (L.V.G.); (E.M.); (H.K.); (K.K.); (I.C.)
| |
Collapse
|