1
|
Sanesi L, Puca V, Caponio VCA, Pinti M, Balice G, Femminella B, Paolantonio M, Cela I, Kaushik NK, Choi EH, Grande R, Sardella E, Perrotti V. Disinfection of dental root canals by cold atmospheric plasma: a systematic review and meta-analysis of dental biofilm. FRONTIERS IN ORAL HEALTH 2024; 5:1483078. [PMID: 39691803 PMCID: PMC11650461 DOI: 10.3389/froh.2024.1483078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 12/19/2024] Open
Abstract
Aim The intricate structure of the tooth root canals has a role in the colonization and biofilm formation in hidden areas that are hardly reached by standard endodontic treatments. This review aims at summarizing data from in vitro and ex vivo studies for a better understanding of the application of cold atmospheric plasma (CAP) for the disinfection of dental root canals. Methods PubMed, Scopus, and Web of Science databases were screened. Characteristics of the included studies were extracted, and a meta-analysis on ex vivo studies was carried out to evaluate the effect of CAP on colony forming unit assay of Enterococcus faecalis (E. faecalis). The study was performed following the PRISMA 2020 guidelines. Results A total of 31 studies fulfilled the selection criteria. Only 2 investigations reported an indirect plasma treatment, 28 trials used direct CAP administration, while 1 study applied both methods. Most of the studies were conducted on E. faecalis using as carrier gas Helium or Argon alone or in combination with Oxygen as well air. A considerable heterogeneity among studies was found regarding treatments which varied for source type, settings, and protocols of application. Despite this, CAP showed effectiveness in reducing E. faecalis colony forming unit with a standardized mean difference of 4.51, 95% C.I. = 2.55-6.48, p-value < 0.001. Conclusion The data demonstrated the antimicrobial effect of direct CAP application against microorganisms. In-vitro studies showed an effect that depended on the time and distance of treatment, while the meta-analysis performed on ex vivo studies showed that the effect of CAP was independent of time and distance. Systematic Review Registration https://doi.org/10.17605/OSF.IO/BJ59V, identifier OSF registries.
Collapse
Affiliation(s)
- Lorenzo Sanesi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Valentina Puca
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | | | - Morena Pinti
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Giuseppe Balice
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Femminella
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Michele Paolantonio
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy
| | - Ilaria Cela
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Rossella Grande
- Department of Pharmacy, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Eloisa Sardella
- CNR- Istituto di Nanotecnologia (CNR-NANOTEC) UoS Bari, c/o Dipartimento di Chimica, Università Degli Studi di Bari Aldo Moro, Bari, Italy
| | - Vittoria Perrotti
- Department of Innovative Technologies in Medicine & Dentistry, University of Chieti-Pescara, Chieti, Italy
- UdA-TechLab, Research Center, University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Negrescu AM, Zampieri L, Martines E, Cimpean A. The Potential of a Novel Cold Atmospheric Plasma Jet as a Feasible Therapeutic Strategy for Gingivitis-A Cell-Based Study. Cells 2024; 13:1970. [PMID: 39682721 DOI: 10.3390/cells13231970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Due to its antimicrobial, anti-inflammatory and pro-healing properties, the application of cold atmospheric plasma (CAP) has emerged as a new and promising therapeutic strategy in various fields of medicine, including general medicine and dentistry. In this light, the aim of the present study was to investigate the effects of a homemade plasma jet on the cellular behaviour of two important cell types involved in gingivitis, namely gingival fibroblasts (HGF-1 cell line) and macrophages (RAW 264.7 cell line), by the direct application of CAP in different experimental conditions. The cellular behaviour of the HGF-1 cells was investigated in terms of viability/proliferation (LIVE/DEAD and CCK-8 assays), morphological features (immunofluorescent staining of the actin cytoskeleton) and fibronectin expression (immunocytochemical staining of the fibronectin network), while the macrophages' response was evaluated through the assessment of the cellular survival/proliferation rate (LIVE/DEAD and CCK-8 assays), morphological behaviour (immunofluorescent staining of the actin cytoskeleton) and inflammatory activity (pro-inflammatory cytokine secretion profile (ELISA assay) and foreign body giant cells (FBGCs) formation (immunofluorescent staining of the actin cytoskeleton and multinuclearity index determination)). The in vitro biological assessment revealed an upward trend dependent on treatment time and number of CAP applications, in terms of fibroblasts proliferation (p < 0.0001) and fibronectin expression (p < 0.0001). On the other hand, the macrophages exposed to five consecutive CAP applications for longer treatment times (over 120 s) exhibited a strong pro-inflammatory activity, as evinced by their altered morphology, pro-inflammatory cytokine profile (p < 0.0001) and FBGCs formation. Overall, our results demonstrate that CAP exposure, when used with appropriate operating parameters, has a beneficial effect on the cellular response of HGF-1 and RAW 264.7 cells, thus paving the way for further in vitro and in vivo investigations that will allow the translation of CAP treatment from research to clinic as an alternative therapy for gingivitis.
Collapse
Affiliation(s)
- Andreea-Mariana Negrescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050657 Bucharest, Romania
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 050657 Bucharest, Romania
| | - Leonardo Zampieri
- Department of Physics "Giuseppe Occhialini", University of Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy
| | - Emilio Martines
- Department of Physics "Giuseppe Occhialini", University of Milano-Bicocca, Piazza Della Scienza 3, 20126 Milan, Italy
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050657 Bucharest, Romania
| |
Collapse
|
3
|
Rahati Ghuchani Z, Sayar F, Hodjat M. The effect of cold atmospheric plasma on viability of osteoblasts and expression of RANKL and OPG genes in medium with bisphosphonates. Sci Rep 2024; 14:27021. [PMID: 39506017 PMCID: PMC11542051 DOI: 10.1038/s41598-024-78138-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Medication-related osteonecrosis of the jaw is a rare but severe complication with challenging treatment protocols. Cold atmospheric plasma (CAP) has shown promising effects in wound healing, cell proliferation and viability. This study investigated the effect of CAP on osteoblasts in a culture medium containing bisphosphonates. Pilot study was designed to determine the optimal setting of CAP. MG-63 cells were exposed to zoledronic acid at a concentration of 10 micromolar for 72 h. Study groups with the best MTT assay results, were chosen for assessing OPG and RANKL genes by RT-PCR. Cell viability was significantly higher in groups 9 kV.1 mm.90 s, 10 kV.1 mm.60 s, and 12 kV.1 mm.60 s (P < 0.05). Expression of RANKL in these groups was significantly lower than the positive control group (medium culture without zoledronic and plasma treatment) and higher than the BP group (culture with zoledronic without plasma treatment), except for the 12 kV.1 mm.60 s group, which did not differ significantly from the positive control group (P > 0.05). OPG decreased in all test groups compared to BP (p < 0.05), except for the 12 kV.1 mm.60 s group, which did not significantly differ from BP (P > 0.05). RANKL/OPG ratio in groups 9 kV.1 mm.90 s and 12 kV.1 mm.60 s significantly increased compared to BP (P < 0.05).CAP treatment may enhance the viability of osteoblasts exposed to bisphosphonates, increase their activity levels, enhance osteoclast activity, and improve bone turnover rates.
Collapse
Affiliation(s)
| | - Ferena Sayar
- Department of Periodontics, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Karrer S, Unger P, Gruber M, Gebhardt L, Schober R, Berneburg M, Bosserhoff AK, Arndt S. In Vitro Safety Study on the Use of Cold Atmospheric Plasma in the Upper Respiratory Tract. Cells 2024; 13:1411. [PMID: 39272983 PMCID: PMC11394226 DOI: 10.3390/cells13171411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Cold atmospheric plasma (CAP) devices generate reactive oxygen and nitrogen species, have antimicrobial and antiviral properties, but also affect the molecular and cellular mechanisms of eukaryotic cells. The aim of this study is to investigate CAP treatment in the upper respiratory tract (URT) to reduce the incidence of ventilator-associated bacterial pneumonia (especially superinfections with multi-resistant pathogens) or viral infections (e.g., COVID-19). For this purpose, the surface-microdischarge-based plasma intensive care (PIC) device was developed by terraplasma medical GmbH. This study analyzes the safety aspects using in vitro assays and molecular characterization of human oral keratinocytes (hOK), human bronchial-tracheal epithelial cells (hBTE), and human lung fibroblasts (hLF). A 5 min CAP treatment with the PIC device at the "throat" and "subglottis" positions in the URT model did not show any significant differences from the untreated control (ctrl.) and the corresponding pressurized air (PA) treatment in terms of cell morphology, viability, apoptosis, DNA damage, and migration. However, pro-inflammatory cytokines (MCP-1, IL-6, and TNFα) were induced in hBTE and hOK cells and profibrotic molecules (collagen-I, FKBP10, and αSMA) in hLF at the mRNA level. The use of CAP in the oropharynx may make an important contribution to the recovery of intensive care patients. The results indicate that a 5 min CAP treatment in the URT with the PIC device does not cause any cell damage. The extent to which immune cell activation is induced and whether it has long-term effects on the organism need to be carefully examined in follow-up studies in vivo.
Collapse
Affiliation(s)
- Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Petra Unger
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Michael Gruber
- Department of Anesthesiology, University Medical Center Regensburg, 93053 Regensburg, Germany
| | | | | | - Mark Berneburg
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany
| | - Anja Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
- Comprehensive Cancer Center Alliance WERA (CCC WERA), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
5
|
Liu Z, Du X, Xu L, Shi Q, Tang X, Cao Y, Song K. The therapeutic perspective of cold atmospheric plasma in periodontal disease. Oral Dis 2024; 30:938-948. [PMID: 36825384 DOI: 10.1111/odi.14547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/31/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
OBJECTIVES Periodontal disease (PD) is one of the most common infectious diseases with complex inflammatory conditions, having irreversibly destructive impacts on the periodontal supporting tissues. The application of cold atmospheric plasma (CAP) is a promising adjuvant therapy modality for PD. However, the mechanism of CAP in PD treatment is still poorly understood. The review motivates to outline the latest researches concerning the applications of CAP in PD treatment. METHODS We searched CAP-related literature through utilizing the well-established databases of Pubmed, Scopus and Web of Science according to the following keywords related to periodontal disease (periodontal, gingival, gingivitis, gingiva, periodontium, periodontitis). RESULTS A total of 18 concerning original studies were found. These studies could be classified according to three pathophysiological perspectives of PD. The therapeutic mechanisms of CAP may be attributed to the oxidative stress-related cell death of periodontal bacteria, the suppression of periodontal inflammation and pro-inflammatory cytokine secretion, as well as the acceleration of periodontal soft tissue wound healing and hard tissue reconstruction. CONCLUSIONS Cold atmospheric plasma has potential therapeutic effects on PD through three mechanisms: antimicrobial effect, inflammation attenuation, and tissue remodeling. This review hopefully provides a comprehensive perspective into the potential of CAP in PD therapy.
Collapse
Affiliation(s)
- Zhixin Liu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xijin Du
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Lianyi Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Qi Shi
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xuezhi Tang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yingguang Cao
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ke Song
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Prosthodontics and Implantology, School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
6
|
Harada A, Sasaki H, Asami Y, Hanazawa K, Miyazaki S, Sekine H, Yajima Y. Effects of the application of low-temperature atmospheric plasma on titanium implants on wound healing in peri-implant connective tissue in rats. Int J Implant Dent 2024; 10:15. [PMID: 38509336 PMCID: PMC10954594 DOI: 10.1186/s40729-024-00524-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/17/2024] [Indexed: 03/22/2024] Open
Abstract
PURPOSE This study aimed to clarify the effects of surface modification of titanium (Ti) implants by low-temperature atmospheric pressure plasma treatment on wound healing and cell attachment for biological sealing in peri-implant soft tissue. METHODS Hydrophilization to a Ti disk using a handheld low-temperature atmospheric pressure plasma device was evaluated by a contact angle test and compared with an untreated group. In in vivo experiments, plasma-treated pure Ti implants using a handheld plasma device (experimental group: PL) and untreated implants (control group: Cont) were placed into the rat upper molar socket, and samples were harvested at 3, 7 and 14 days after surgery. Histological evaluation was performed to assess biological sealing, collagen- and cell adhesion-related gene expression by reverse transcription quantitative polymerase chain reaction, collagen fiber detection by Picrosirius Red staining, and immunohistochemistry for integrins. RESULTS In in vivo experiments, increased width of the peri-implant connective tissue (PICT) and suppression of epithelial down growth was observed in PL compared with Cont. In addition, high gene expression of types I and XII collagen at 7 days and acceleration of collagen maturation was recognized in PL. Strong immunoreaction of integrin α2, α5, and β1 was observed at the implant contact area of PICT in PL. CONCLUSIONS The handheld low-temperature atmospheric pressure plasma device provided hydrophilicity on the Ti surface and maintained the width of the contact area of PICT to the implant surface as a result of accelerated collagen maturation and fibroblast adhesion, compared to no plasma application.
Collapse
Affiliation(s)
- Atsuro Harada
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan.
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan.
| | - Yosuke Asami
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Kiyotoshi Hanazawa
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Sota Miyazaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Hideshi Sekine
- Department of Fixed Prosthodontics, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| | - Yasutomo Yajima
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College, 2-9-18 Kandamisaki-Cho, Chiyoda-Ku, Tokyo, 101-0061, Japan
| |
Collapse
|
7
|
Ma Y, Sun T, Ren K, Min T, Xie X, Wang H, Xu G, Dang C, Zhang H. Applications of cold atmospheric plasma in immune-mediated inflammatory diseases via redox homeostasis: evidence and prospects. Heliyon 2023; 9:e22568. [PMID: 38107323 PMCID: PMC10724573 DOI: 10.1016/j.heliyon.2023.e22568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
As a representative technology in plasma medicine, cold atmospheric plasma (CAP) has beneficial outcomes in surface disinfection, wound repair, tissue regeneration, solid tumor therapy. Impact on immune response and inflammatory conditions was also observed in the process of CAP treatment. Relevant literatures were collected to assess efficacy and summarize possible mechanisms of the innovation. CAP mediates alteration in local immune microenvironment mainly through two ways. One is to down-regulate the expression level of several cytokines, impeding further conduction of immune or inflammatory signals. Intervening the functional phenotype of cells through different degree of oxidative stress is the other approach to manage the immune-mediated inflammatory disorders. A series of preclinical and clinical studies confirmed the therapeutic effect and side effects free of CAP. Moreover, several suggestions proposed in this manuscript might help to find directions for future investigation.
Collapse
Affiliation(s)
- Yuyi Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tuanhe Sun
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kaijie Ren
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Tianhao Min
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xin Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Haonan Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
8
|
Arguello-Sánchez R, López-Callejas R, Rodríguez-Méndez BG, Scougall-Vilchis R, Velázquez-Enríquez U, Mercado-Cabrera A, Peña-Eguiluz R, Valencia-Alvarado R, Medina-Solís CE. Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7204. [PMID: 38005133 PMCID: PMC10672626 DOI: 10.3390/ma16227204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Non-thermal plasmas (NTPs), known as cold atmospheric plasmas (CAPs), hold great potential for diverse medical applications, including dentistry. However, traditional linear and rigid dielectric barrier discharge reactors used for NTP generation encounter limitations in accessing oral cavities and root canals. To address this issue, we have developed an innovative NTP reactor featuring an angled end for improved accessibility. The central copper electrode, with a 0.59 mm diameter and adjustable length for desired angulation, is coated with zircon powder (ZrSiO4) to ensure stable NTP generation. This central electrode is housed within a stainless steel tube (3 mm internal diameter, 8 mm external diameter, and 100 mm length) with a 27° angle at one end, making it ergonomically suitable for oral applications. NTP generation involves polarizing the reactor electrodes with 13.56 MHz radio frequency signals, using helium gas as a working medium. We introduce plasma-treated water (PTW) as an adjunctive therapy to enhance biofilm eradication within root canals. A synergistic approach combining NTP and PTW is employed and compared to the gold standard (sodium hypochlorite, NaOCl), effectively neutralizing Enterococcus faecalis bacteria, even in scenarios involving biofilms. Moreover, applying NTP in both gaseous and liquid environments successfully achieves bacterial inactivation at varying treatment durations, demonstrating the device's suitability for medical use in treating root canal biofilms. The proposed NTP reactor, characterized by its innovative design, offers a practical and specific approach to plasma treatment in dental applications. It holds promise in combatting bacterial infections in root canals and oral cavities.
Collapse
Affiliation(s)
- Raúl Arguello-Sánchez
- Dental Reseach Center and Advanced Studies "Dr. Keisaburo Miyata", School of Dentistry, Autonomous University of Mexico State, Av. Paseo Tollocan, 13 Universidad, Toluca de Lerdo 50130, Mexico
| | - Régulo López-Callejas
- Department of Physics, National Institute for Nuclear Research, Carretera Mexico-Toluca S/N, Ocoyoacac 52750, Mexico
| | | | - Rogelio Scougall-Vilchis
- Dental Reseach Center and Advanced Studies "Dr. Keisaburo Miyata", School of Dentistry, Autonomous University of Mexico State, Av. Paseo Tollocan, 13 Universidad, Toluca de Lerdo 50130, Mexico
| | - Ulises Velázquez-Enríquez
- Dental Reseach Center and Advanced Studies "Dr. Keisaburo Miyata", School of Dentistry, Autonomous University of Mexico State, Av. Paseo Tollocan, 13 Universidad, Toluca de Lerdo 50130, Mexico
| | - Antonio Mercado-Cabrera
- Department of Physics, National Institute for Nuclear Research, Carretera Mexico-Toluca S/N, Ocoyoacac 52750, Mexico
| | - Rosendo Peña-Eguiluz
- Department of Physics, National Institute for Nuclear Research, Carretera Mexico-Toluca S/N, Ocoyoacac 52750, Mexico
| | - Raúl Valencia-Alvarado
- Department of Physics, National Institute for Nuclear Research, Carretera Mexico-Toluca S/N, Ocoyoacac 52750, Mexico
| | - Carlo Eduardo Medina-Solís
- Dental Reseach Center and Advanced Studies "Dr. Keisaburo Miyata", School of Dentistry, Autonomous University of Mexico State, Av. Paseo Tollocan, 13 Universidad, Toluca de Lerdo 50130, Mexico
- Dentistry Academic Area of the Health Sciences Institute, Autonomous University of Hidalgo State, Exhacienda de la Concepción S/N Carretera Actopan-Tilcuautla, San Agustin Tlaxiaca 42160, Mexico
| |
Collapse
|
9
|
Zhang Y, Yan Z, Wu H, Yang X, Yang K, Song W. Low-Temperature Plasma-Activated Medium Inhibits the Migration of Non-Small Cell Lung Cancer Cells via the Wnt/ β-Catenin Pathway. Biomolecules 2023; 13:1073. [PMID: 37509109 PMCID: PMC10377075 DOI: 10.3390/biom13071073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
This study explored the molecular mechanism of the plasma activation medium (PAM) inhibiting the migration ability of NSCLC (non-small cell lung cancer) cells. The effect of PAM incubation on the cell viability of NSCLC was detected through a cell viability experiment. Transwell cells and microfluidic chips were used to investigate the effects of PAM on the migration capacity of NSCLC cells, and the latter was used for the first time to observe the changes in the migration capacity of cancer cells treated with PAM. Moreover, the molecular mechanisms of PAM affecting the migration ability of NSCLC cells were investigated through intracellular and extracellular ROS detection, mitochondrial membrane potential, and Western blot experiments. The results showed that after long-term treatment with PAM, the high level of ROS produced by PAM reduced the level of the mitochondrial membrane potential of cells and blocked the cell division cycle in the G2/M phase. At the same time, the EMT process was reversed by inhibiting the Wnt/β-catenin signaling pathway. These results suggested that the high ROS levels generated by the PAM treatment reversed the EMT process by inhibiting the WNT/β-catenin pathway in NSCLC cells and thus inhibited the migration of NSCLC cells. Therefore, these results provide good theoretical support for the clinical treatment of NSCLC with PAM.
Collapse
Affiliation(s)
- Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Optics and Fine Mechanics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Optics and Fine Mechanics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Hui Wu
- Anhui Institute of Optics and Fine Mechanics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xiao Yang
- Anhui Institute of Optics and Fine Mechanics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ke Yang
- Anhui Institute of Optics and Fine Mechanics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
- Anhui Institute of Optics and Fine Mechanics, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
10
|
Chiappim W, de Paula Bernardes V, Almeida NA, Pereira VL, Bragotto APA, Cerqueira MBR, Furlong EB, Pessoa R, Rocha LO. Effect of Gliding Arc Plasma Jet on the Mycobiota and Deoxynivalenol Levels in Naturally Contaminated Barley Grains. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:5072. [PMID: 36981981 PMCID: PMC10049212 DOI: 10.3390/ijerph20065072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/22/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Fusarium graminearum and Fusarium meridionale are primary contaminants of barley, capable of producing several mycotoxins, mainly type B trichothecenes and zearalenone. Cold plasma decontamination has been gaining prominence, seeking to control the fungal and mycotoxin contamination of food and feed and to improve product quality. To reach this objective, the present study was divided into two parts. In the first part, F. meridionale and F. graminearum strains were exposed to gliding arc plasma jet (GAPJ). Cell viability tests showed the inactivation of F. meridionale after 15-min treatment, whereas F. graminearum showed to be resistant. In the second part, barley grains were treated by GAPJ for 10, 20, and 30 min, demonstrating a reduction of about 2 log CFU/g of the barley's mycobiota, composed of yeasts, strains belonging to the F. graminearum species complex, Alternaria, and Aspergillus. A decrease in DON levels (up to 89%) was observed after exposure for 20 min. However, an increase in the toxin Deoxynivalenol-3-glucoside (D3G) was observed in barley grains, indicating a conversion of DON to D3G.
Collapse
Affiliation(s)
- William Chiappim
- Laboratory of Plasmas and Applications, Department of Physics, Faculty of Engineering and Sciences, São Paulo State University (UNESP), Guaratinguetá 12516-410, Brazil
| | - Vanessa de Paula Bernardes
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Naara Aparecida Almeida
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Viviane Lopes Pereira
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | - Adriana Pavesi Arisseto Bragotto
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| | | | - Eliana Badiale Furlong
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande 96203-900, Brazil
| | - Rodrigo Pessoa
- Laboratório de Plasmas e Processos, Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, Brazil
| | - Liliana Oliveira Rocha
- Laboratório de Microbiologia de Alimentos I, Departmento de Alimentos e Nutrição, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas-UNICAMP, Campinas 13083-862, Brazil
| |
Collapse
|
11
|
Lee CM, Jeong YIL, Lim YK, Kook JK, Yang SW, Kook MS, Kim BH. The effect of cold atmospheric plasma (CAP) on the formation of reactive oxygen species and treatment of Porphyromonas gingivalis biofilm in vitro for application in treatment of peri-implantitis. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1337-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
12
|
Simultaneous Treatment of Both Sides of the Polymer with a Conical-Shaped Atmospheric Pressure Plasma Jet. Polymers (Basel) 2023; 15:polym15020461. [PMID: 36679342 PMCID: PMC9866843 DOI: 10.3390/polym15020461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/18/2023] Open
Abstract
A conical-shaped atmospheric pressure plasma jet (CS-APPJ) was developed to overcome a standard limitation of APPJs, which is their small treatment area. The CS-APPJs increase the treatment area but use the same gas flow. In the present work, polypropylene samples were treated by CS-APPJ and characterized by scanning electron microscope (SEM), the contact angle, Fourier-transformed infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS). It was observed that the treatment co-occurs on the face directly in contact with the plasma and on the opposite face (OF) of the samples, i.e., no contact. However, the treatment changed the chemical composition on each side; the OF is rougher than the direct contact face (DCF), probably due to the oxygen groups in excess at the DCF and nitrogen in quantity at the OF. Although simultaneous treatment of both sides of the sample occurs for most atmospheric plasma treatments, this phenomenon is not explored in the literature.
Collapse
|
13
|
Chiappim W, Neto BB, Shiotani M, Karnopp J, Gonçalves L, Chaves JP, Sobrinho ADS, Leitão JP, Fraga M, Pessoa R. Plasma-Assisted Nanofabrication: The Potential and Challenges in Atomic Layer Deposition and Etching. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193497. [PMID: 36234624 PMCID: PMC9565849 DOI: 10.3390/nano12193497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/01/2022] [Indexed: 06/12/2023]
Abstract
The growing need for increasingly miniaturized devices has placed high importance and demands on nanofabrication technologies with high-quality, low temperatures, and low-cost techniques. In the past few years, the development and recent advances in atomic layer deposition (ALD) processes boosted interest in their use in advanced electronic and nano/microelectromechanical systems (NEMS/MEMS) device manufacturing. In this context, non-thermal plasma (NTP) technology has been highlighted because it allowed the ALD technique to expand its process window and the fabrication of several nanomaterials at reduced temperatures, allowing thermosensitive substrates to be covered with good formability and uniformity. In this review article, we comprehensively describe how the NTP changed the ALD universe and expanded it in device fabrication for different applications. We also present an overview of the efforts and developed strategies to gather the NTP and ALD technologies with the consecutive formation of plasma-assisted ALD (PA-ALD) technique, which has been successfully applied in nanofabrication and surface modification. The advantages and limitations currently faced by this technique are presented and discussed. We conclude this review by showing the atomic layer etching (ALE) technique, another development of NTP and ALD junction that has gained more and more attention by allowing significant advancements in plasma-assisted nanofabrication.
Collapse
Affiliation(s)
- William Chiappim
- Departamento de Física, Laboratório de Plasmas e Aplicações, Faculdade de Engenharia e Ciências, Universidade Estadual Paulista (UNESP), Av. Ariberto Pereira da Cunha, 333-Portal das Colinas, Guaratinguetá 12516-410, SP, Brazil
| | - Benedito Botan Neto
- Departamento de Física, Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, SP, Brazil
| | - Michaela Shiotani
- Departamento de Física, Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, SP, Brazil
| | - Júlia Karnopp
- Departamento de Física, Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, SP, Brazil
| | - Luan Gonçalves
- Departamento de Física, Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, SP, Brazil
| | - João Pedro Chaves
- Departamento de Física, Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, SP, Brazil
| | - Argemiro da Silva Sobrinho
- Departamento de Física, Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, SP, Brazil
| | | | - Mariana Fraga
- Escola de Engenharia, Universidade Presbiteriana Mackenzie, São Paulo 01302-907, SP, Brazil
| | - Rodrigo Pessoa
- Departamento de Física, Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, SP, Brazil
| |
Collapse
|
14
|
Hong Q, Sun H, Chen M, Zhang S, Yu Q. Plasma treatment effects on destruction and recovery of Porphyromonas gingivalis biofilms. PLoS One 2022; 17:e0274523. [PMID: 36103549 PMCID: PMC9473617 DOI: 10.1371/journal.pone.0274523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/28/2022] [Indexed: 11/18/2022] Open
Abstract
The objective of this study was to investigate the treatment effects of non-thermal atmospheric gas plasmas (NTAP) on destruction and the recovery (or re-colonization) of Porphyromonas gingivalis (P. gingivalis) in biofilms. P. gingivalis is a well-known keystone periodontal pathogen strongly associated with periodontal diseases, especially periodontitis. P. gingivalis biofilms were formed on stainless steel coupons and treated for 1, 2, and 5 minutes by NTAP of pure argon gas and argon+oxygen gas mixture. MTT assay, colony forming unit (CFU) counting assay and confocal laser scanning microscopy (CLSM) were used to assess the destruction efficiency. In addition, the plasma treated biofilms were re-cultured in the medium supplemented with antibiotics and oxidative stress sources to determine the synergy of the NTAP with other antimicrobial agents. The results showed the plasma treatment could result in 2.7 log unit reduction in bacterial load. The recovered biofilm CFU with NTAP treatment combined with sub minimal inhibition concentration of amoxicillin was 0.33 log units less than the biofilm treated with amoxicillin alone. The recovered biofilm CFU in NTAP groups was about 2.0 log units less than that in the untreated controls under H2O2 treatment. There was approximately 1.0 log unit reduction of biofilm CFU in plasma treated biofilm compared with untreated control under paraquat treatment. The plasma treated biofilms exhibited less resistance to amoxicillin and greater susceptibility to hydrogen peroxide (H2O2) and paraquat, suggesting that NTAP may enhance biofilm susceptibility to host defense. These in vitro findings suggested that NTAP could be a novel and effective treatment method of oral biofilms that cause periodontal diseases.
Collapse
Affiliation(s)
- Qing Hong
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, United States of America
| | - Hongmin Sun
- Department of Internal Medicine, University of Missouri, Columbia, MO, United States of America
| | - Meng Chen
- Nanova, Inc., Columbia, MO, United States of America
| | - Shaoping Zhang
- Department of Periodontics, College of Dentistry, Iowa University, Iowa City, IA, United States of America
| | - Qingsong Yu
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
15
|
Cold Atmospheric Pressure Plasma Is Effective against P. gingivalis (HW24D-1) Mature Biofilms and Non-Genotoxic to Oral Cells. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The effects of helium cold atmospheric pressure plasma (He-CAPP) jet on Porphyromonas gingivalis (HW24D-1) biofilm, on human gingival fibroblasts (HGF) and human gingival keratinocytes (OBA-9) were assessed. Standardized suspension of P. gingivalis was obtained, and biofilms were grown anaerobically for 48 h. After exposition to He-CAPP, the biofilm viability was evaluated by XTT assay. HGF were grown at 37 °C, in an CO2 chamber in DMEM, while OBA-9 cells were cultured in keratinocyte serum-free medium. After 24 h, plates were exposed to He-CAPP for 1 to 7 min. Plasma was generated using a commercial AC power supply with amplitude modulated signal (voltage amplitude of 20 kVp-p, frequency of 31.0 kHz and duty cycle of 22%). The corresponding discharge power was 0.6W at He flow rate of 1 L/min. DNA damage was accessed by static cytometry. Data were analyzed by GraphPad Prism (p < 0.05). Significant reductions in P. gingivalis viability in relation to non-treated groups were detected (p < 0.0001), directly proportional to exposure time. Treated groups were slightly aneuploid after 5- and 7-min treatment in HGF, and for 3 min in OBA-9 cells, with 1.2 DNA index mean. Helium cold atmospheric pressure plasma jet showed inhibitory effect on P. gingivalis mature biofilm and was not genotoxic for epithelial gingival cells and human oral fibroblasts.
Collapse
|
16
|
Milhan NVM, Chiappim W, Sampaio ADG, Vegian MRDC, Pessoa RS, Koga-Ito CY. Applications of Plasma-Activated Water in Dentistry: A Review. Int J Mol Sci 2022; 23:ijms23084131. [PMID: 35456947 PMCID: PMC9029124 DOI: 10.3390/ijms23084131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The activation of water by non-thermal plasma creates a liquid with active constituents referred to as plasma-activated water (PAW). Due to its active constituents, PAW may play an important role in different fields, such as agriculture, the food industry and healthcare. Plasma liquid technology has received attention in recent years due to its versatility and good potential, mainly focused on different health care purposes. This interest has extended to dentistry, since the use of a plasma–liquid technology could bring clinical advantages, compared to direct application of non-thermal atmospheric pressure plasmas (NTAPPs). The aim of this paper is to discuss the applicability of PAW in different areas of dentistry, according to the published literature about NTAPPs and plasma–liquid technology. The direct and indirect application of NTAPPs are presented in the introduction. Posteriorly, the main reactors for generating PAW and its active constituents with a role in biomedical applications are specified, followed by a section that discusses, in detail, the use of PAW as a tool for different oral diseases.
Collapse
Affiliation(s)
- Noala Vicensoto Moreira Milhan
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
- Correspondence: ; Tel.: +55-12-991851206
| | - William Chiappim
- Plasma and Processes Laboratory, Department of Physics, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (W.C.); (R.S.P.)
| | - Aline da Graça Sampaio
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
| | - Mariana Raquel da Cruz Vegian
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
| | - Rodrigo Sávio Pessoa
- Plasma and Processes Laboratory, Department of Physics, Aeronautics Institute of Technology, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (W.C.); (R.S.P.)
| | - Cristiane Yumi Koga-Ito
- Oral Biopathology Graduate Program, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12245-000, Brazil; (A.d.G.S.); (M.R.d.C.V.); (C.Y.K.-I.)
- Department of Environment Engineering, São José dos Campos Institute of Science & Technology, São Paulo State University, UNESP, São Paulo 12247-016, Brazil
| |
Collapse
|