1
|
Su Q, Yang SP, Guo JP, Rong YR, Sun Y, Chai YR. Epigallocatechin-3-gallate ameliorates lipopolysaccharide-induced acute thymus involution in mice via AMPK/Sirt1 pathway. Microbiol Immunol 2024; 68:281-293. [PMID: 38886542 DOI: 10.1111/1348-0421.13159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
The thymus, a site to culture the naïve T lymphocytes, is susceptible to atrophy or involution due to aging, inflammation, and oxidation. Epigallocatechin-3-gallate (EGCG) has been proven to possess anti-inflammatory, antioxidant, and antitumor activity. Here, we investigate the effects of EGCG on thymic involution induced by lipopolysaccharide (LPS), an endotoxin derived from Gram-negative bacteria. The methodology included an in vivo experiment on female Kunming mice exposed to LPS and EGCG. Morphological assessment of thymic involution, immunohistochemical detection, and thymocyte subsets analysis by flow cytometry were further carried out to evaluate the potential role of EGCG on the thymus. As a result, we found that EGCG alleviated LPS-induced thymic atrophy, increased mitochondrial membrane potential and superoxide dismutase levels, and decreased malondialdehyde and reactive oxygen species levels. In addition, EGCG pre-supplement restored the ratio of thymocyte subsets, the expression of autoimmune regulator, sex-determining region Y-box 2, and Nanog homebox, and reduced the number of senescent cells and collagen fiber deposition. Western blotting results indicated that EGCG treatment elevated LPS-induced decrease in pAMPK, Sirt1 protein expression. Collectively, EGCG relieved thymus architecture and function damaged by LPS via regulation of AMPK/Sirt1 signaling pathway. Our findings may provide a new strategy on protection of thymus from involution caused by LPS by using EGCG. And EGCG might be considered as a potential agent for the prevention and treatment of thymic involution.
Collapse
Affiliation(s)
- Qing Su
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shu-Ping Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
- School of Medical Technology, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, PR China
| | - Jun-Ping Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yi-Ren Rong
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yun Sun
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu-Rong Chai
- Department of Histology and Embryology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
2
|
Li D, Cao D, Sun Y, Cui Y, Zhang Y, Jiang J, Cao X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front Immunol 2024; 15:1331641. [PMID: 38348027 PMCID: PMC10859531 DOI: 10.3389/fimmu.2024.1331641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Cancer, a disease that modern medicine has not fully understood and conquered, with its high incidence and mortality, deprives countless patients of health and even life. According to global cancer statistics, there were an estimated 19.3 million new cancer cases and nearly 10 million cancer deaths in 2020, with the age-standardized incidence and mortality rates of 201.0 and 100.7 per 100,000, respectively. Although remarkable advancements have been made in therapeutic strategies recently, the overall prognosis of cancer patients remains not optimistic. Consequently, there are still many severe challenges to be faced and difficult problems to be solved in cancer therapy today. Epigallocatechin gallate (EGCG), a natural polyphenol extracted from tea leaves, has received much attention for its antitumor effects. Accumulating investigations have confirmed that EGCG can inhibit tumorigenesis and progression by triggering apoptosis, suppressing proliferation, invasion, and migration, altering tumor epigenetic modification, and overcoming chemotherapy resistance. Nevertheless, its regulatory roles and biomolecular mechanisms in the immune microenvironment, metabolic microenvironment, and immunotherapy remain obscure. In this article, we summarized the most recent updates about the effects of EGCG on tumor microenvironment (TME), metabolic reprogramming, and anti-cancer immunotherapy. The results demonstrated EGCG can promote the anti-cancer immune response of cytotoxic lymphocytes and dendritic cells (DCs), attenuate the immunosuppression of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), and inhibit the tumor-promoting functions of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), and various stromal cells including cancer-associated fibroblasts (CAFs), endothelial cells (ECs), stellate cells, and mesenchymal stem/stromal cells (MSCs). Additionally, EGCG can suppress multiple metabolic reprogramming pathways, including glucose uptake, aerobic glycolysis, glutamine metabolism, fatty acid anabolism, and nucleotide synthesis. Finally, EGCG, as an immunomodulator and immune checkpoint blockade, can enhance immunotherapeutic efficacy and may be a promising candidate for antitumor immunotherapy. In conclusion, EGCG plays versatile regulatory roles in TME and metabolic reprogramming, which provides novel insights and combined therapeutic strategies for cancer immunotherapy.
Collapse
Affiliation(s)
- Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Donghui Cao
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Yuanlin Sun
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yingnan Cui
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Yangyu Zhang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Jing Jiang
- Division of Clinical Epidemiology, The First Hospital of Jilin University, Changchun, China
| | - Xueyuan Cao
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Kim JW, Kim JH, Kim CY, Jeong JS, Ko JW, Kim TW. Green tea extract improves cyclophosphamide-induced immunosuppression in mouse spleen and enhances the immune activity of RAW 264.7 cells. Heliyon 2023; 9:e22062. [PMID: 38034622 PMCID: PMC10682678 DOI: 10.1016/j.heliyon.2023.e22062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Cyclophosphamide (CP) is mainly used to treat autoimmune diseases and cancer; however, it damages normal immune cells. Therefore, the effects of chemotherapy on CP are limited. Notably, green tea has been reported to effectively modulate immune function. Here, given the pharmacological properties of green tea, we evaluated the ability of green tea extract (GTE) to restore immunity suppressed by CP in vivo and to activate macrophages in vitro. GTE significantly improved the suppressed immune function, including spleen index and proliferation of spleen T lymphocytes, as revealed by histopathological examination and flow cytometry analysis. Moreover, GTE effectively activated RAW 264.7, as represented by the induction of nitric oxide, reactive oxygen species, and cytokine levels. GTE also increased the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B in RAW 264.7 cells. In conclusion, GTE ameliorated CP-induced immunosuppression in mice and stimulated immune activity in RAW 264.7 cells, possibly by activating the MAPK signaling pathway. These findings suggest that GTE has the potential to be used as a supplementary agent in chemotherapy for CP.
Collapse
Affiliation(s)
- Jeong-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Jin-Hwa Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Chang-Yeop Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Ji-Soo Jeong
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Je-Won Ko
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| | - Tae-Won Kim
- College of Veterinary Medicine (BK21 FOUR Program), Chungnam National University, 99 Daehak-ro, Daejeon, 34131, Republic of Korea
| |
Collapse
|
4
|
Zhang LZ, Gong JG, Li JH, Hao YS, Xu HJ, Liu YC, Feng ZH. Dietary resveratrol supplementation on growth performance, immune function and intestinal barrier function in broilers challenged with lipopolysaccharide. Poult Sci 2023; 102:102968. [PMID: 37586190 PMCID: PMC10450988 DOI: 10.1016/j.psj.2023.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/18/2023] Open
Abstract
This study discusses the effects of resveratrol (RES) on the productive performance, immune function and intestinal barrier function of broiler chickens challenged with lipopolysaccharide (LPS). Two hundred and forty 1-day-old male Arbor Acres broilers were randomly divided into 4 groups of 6 replicates each, with 10 broilers per replicate. This experiment used a 2 × 2 factorial design with dietary factors (basal diets or basal diets supplemented with 400 mg/kg RES were administered from d 1 to 21) and stress factors (intraperitoneal injection of 0.5 mg/kg BW of saline or LPS at 16, 18 and 20 d of age). The results showed that LPS challenge had a significant adverse effect on average daily gain (ADG) in broilers at 16 to 21 d of age (P < 0.05), whereas the addition of RES to the diet inhibited the LPS-induced decrease in ADG (P < 0.05). RES also alleviated LPS-induced immune function damage in broilers, which was manifested by the decrease of spleen index (P < 0.05) and the recovery of serum immunoglobulin M and ileal secretory immunoglobulin A content (P < 0.05). The LPS challenge also disrupts intestinal barrier function and inflammation, and RES mitigates these adverse effects in different ways. RES attenuated LPS-induced reduction of villus height in the jejunum and ileum of broilers (P < 0.05). LPS also caused an abnormal increase in plasma D-lactic acid levels in broilers (P < 0.05), which was effectively mitigated by RES (P < 0.05). LPS challenge resulted in a significant decrease in mRNA expression of occludin in the intestinal mucosa (P < 0.05), which was mitigated by the addition of RES (P < 0.05). RES significantly decreased the mRNA expression of toll-like receptor 4, nuclear factor kappa-B and tumor necrosis factor alpha in the ileum tissue stimulated by LPS (P < 0.05). Taken together, this study shows that RES exerts its beneficial effect on broilers challenged with LPS by alleviating immune function damage, relieving intestinal inflammation and barrier damage, and thus improving growth performance.
Collapse
Affiliation(s)
- Lei-Zheng Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jian-Gang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Jia-Hui Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yan-Shuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Hong-Jian Xu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yan-Ci Liu
- Baoding Vocational and Technical College, Baoding, Hebei 071001, China
| | - Zhi-Hua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
5
|
Niu X, Liu Z, Wang J, Wu D. Green tea EGCG inhibits naïve CD4 + T cell division and progression in mice: An integration of network pharmacology, molecular docking and experimental validation. Curr Res Food Sci 2023; 7:100537. [PMID: 37441168 PMCID: PMC10333431 DOI: 10.1016/j.crfs.2023.100537] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary green tea epigallocatechin-3-gallate (EGCG) could attenuate experimental autoimmune encephalomyelitis via the modification of the balance of CD4+ T helper (Th) cells. Moreover, EGCG administration in vitro has a direct impact on the regulatory cytokines and differentiation of CD4+ T cells. Here, we aim to determine whether EGCG directly affects the cell division and progression in naive CD4+ T cells. We first investigate the effect of EGCG on naïve CD4+ T cell division and progression in vitro. An integrated analysis of network pharmacology and molecular docking was utilized to further identify the targets of EGCG for T cell-mediated autoimmune diseases and multiple sclerosis (MS). EGCG treatment prevented naïve CD4+ T cells from progressing through the cell cycle when stimulated with anti-CD3/CD28 antibodies. This was achieved by increasing the proportion of cells arrested in the G0/G1 phase by 8.6% and reducing DNA synthesis activity by 51% in the S phase. Furthermore, EGCG treatment inhibited the expression of cyclins (cyclin D1, cyclin D3, cyclin A, and cyclin B1) and CDKs (CDK2 and CDK6) during naïve CD4+ T cell activation in response to anti-CD3/CD28 stimulation. However, EGCG inhibited the decrease of P27Kip1 (CDKN1B) during naïve CD4+ T cell activation, whereas it inhibited the increase of P21Cip1 (CDKN1A) expression 48 h after mitogenic stimulation. The molecular docking analysis confirmed that these proteins (CD4, CCND1, and CDKN1A) are the primary targets for EGCG, T cell-mediated autoimmune diseases, and MS. Finally, target enrichment analysis indicated that EGCG may affect the cell cycle, T cell receptor signaling pathway, Th cell differentiation, and NF-κB signaling pathway. These findings reveal a crucial role of EGCG in the division and progression of CD4+ T cells, and underscore other potential targets of EGCG in T cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Xinli Niu
- Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- College of Life Science, Henan University, Kaifeng, 475000, China
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, USA
| | - Zejin Liu
- Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Junpeng Wang
- Translational Medical Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, USA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, 02111, USA
| |
Collapse
|
6
|
Fan X, Yin J, Yin J, Weng X, Ding R. Comparison of the anti-inflammatory effects of vitamin E and vitamin D on a rat model of dextran sulfate sodium-induced ulcerative colitis. Exp Ther Med 2023; 25:98. [PMID: 36761001 PMCID: PMC9893224 DOI: 10.3892/etm.2023.11797] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/09/2022] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to compare the clinical effects of vitamin E and vitamin D on a rat model of dextran sulfate sodium (DSS)-induced ulcerative colitis (UC), and to elucidate the underlying mechanisms associated with changes in the levels of cytokines. After successful establishment of the rat model of DSS-induced UC, prednisolone (1 mg/kg), vitamin D (50 ng) and vitamin E (6, 30 and 150 IU/kg) were orally administered for 1 week. The pharmacodynamics were evaluated by a daily combination of clinical observation (CO) scores, histopathological evaluations and assessment of molecular markers of inflammation. Administration of vitamin D, vitamin E (30 and 150 IU/kg), prednisolone, and the combination of vitamin D and vitamin E resulted in a decrease in CO scores. The severity of inflammation of the colon was markedly alleviated in the treatment groups compared with that in the untreated DSS group according to the results of histopathological examination; however, they showed different inhibitory effects on the levels of some cytokines. In conclusion, the present results indicated that oral administration of vitamin E could promote recovery of DSS-induced UC by the inhibition of proinflammatory cytokines, and that its underlying mechanism may differ from that of vitamin D and glucocorticoid drugs.
Collapse
Affiliation(s)
- Xing Fan
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory for Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China,Office of Laboratory Management, Beijing Technology and Business University, Beijing 100048, P.R. China
| | - Jie Yin
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China
| | - Jiye Yin
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory for Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiechuan Weng
- Department of Neuroscience, Beijing Institute of Basic Medical Sciences, Beijing 100850, P.R. China,Correspondence to: Dr Xiechuan Weng, Department of Neuroscience, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China NULL
| | - Rigao Ding
- National Beijing Center for Drug Safety Evaluation and Research, State Key Laboratory for Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China,Correspondence to: Dr Xiechuan Weng, Department of Neuroscience, Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Beijing 100850, P.R. China NULL
| |
Collapse
|
7
|
Persia FA, Abba R, Pascual LI, Hapon MB, Mackern-Oberti JP, Gamarra-Luques C. Prosopis strombulifera aqueous extract reduces T cell response and ameliorates type I diabetes in NOD mice. J Tradit Complement Med 2022; 13:20-29. [PMID: 36685075 PMCID: PMC9845655 DOI: 10.1016/j.jtcme.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Background New products with tolerogenic properties on T cell response are necessary to improve current efficacy, cost and side effects of immunosuppressants. Prosopis strombulifera aqueous extract (PsAE) have reported cytotoxic, antitumoral, antiatherogenic and antileishmanial activities, containing phytochemicals with immune-related activities. Despite these, there are no previous studies with respect to PsAE suppressive properties over T cell proliferation and their function. Goal Because of previous antecedents, this study aims to evaluate the effect of PsAE on T cell activation, proliferation, cytokine production, and to investigate its effect over an in vivo model of type 1 diabetes (T1D). Experimental procedure Splenocytes and sorted CD4+/CD8+ from wild type C57BL/6 mice were cultured to determine activation, IFN-γ release and T-cell proliferation after polyclonal stimulation. NOD (non-obese diabetic) mice were used to study the effects of orally administered extract on glycemia, insulitis stages and perforin-1 (PRF-1)/granzyme-B (GRZ-B) expression. Results In primary cultures, the plant extract impairs T cell activation, decreases IFN-γ release, and reduces proliferation after different polyclonal stimuli. In vivo, PsAE improves NOD mice glycemic levels and T1D progression by diminution of pancreas insulitis and reduction of PRF-1 and GRZ-B mRNA expression. To our knowledge, this is the first report characterizing the therapeutic properties of PsAE on T cell activation. Conclusion The current work provides evidence about in vitro and in vivo immunosuppressive effects of PsAE and promotes this plant extract as a complementary and alternative treatment in autoimmune T-cell mediated diseases as T1D.
Collapse
Affiliation(s)
- Fabio Andrés Persia
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina,Facultad de Ciencias Médicas, Universidad de Mendoza, Argentina
| | - Romina Abba
- Instituto de Histología y Embriología de Mendoza, CCT Mendoza CONICET, Argentina
| | - Lourdes Inés Pascual
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina
| | - María Belén Hapon
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Juan Pablo Mackern-Oberti
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carlos Gamarra-Luques
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Universidad Nacional de Cuyo, CCT Mendoza CONICET, Argentina,Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina,Corresponding author. Instituto de Medicina y Biología Experimental de Cuyo, Universidad Nacional de Cuyo, CCT Mendoza CONICET, Av. Ruiz Leal s/n. Casilla de Correo 0855, CP5500, Mendoza, Provincia de Mendoza, Argentina.
| |
Collapse
|
8
|
Yu L, Jin Y, Song M, Zhao Y, Zhang H. When Natural Compounds Meet Nanotechnology: Nature-Inspired Nanomedicines for Cancer Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081589. [PMID: 36015215 PMCID: PMC9412684 DOI: 10.3390/pharmaceutics14081589] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Recent significant strides of natural compounds in immunomodulation have highlighted their great potential against cancer. Despite many attempts being made for cancer immunotherapy, the biomedical application of natural compounds encounters a bottleneck because of their unclear mechanisms, low solubility and bioavailability, and limited efficacy. Herein, we summarize the immune regulatory mechanisms of different natural compounds at each step of the cancer-immunity cycle and highlight their anti-tumor potential and current limitations. We then propose and present various drug delivery strategies based on nanotechnology, including traditional nanoparticles (NPs)-based delivery strategies (lipid-based NPs, micelles, and polysaccharide/peptide/protein-based NPs) and novel delivery strategies (cell-derived NPs and carrier-free NPs), thus providing solutions to break through existing bottlenecks. Furthermore, representative applications of nature-inspired nanomedicines are also emphasized in detail with the advantages and disadvantages discussed. Finally, the challenges and prospects of natural compounds for cancer immunotherapy are provided, hopefully, to facilitate their far-reaching development toward clinical translation.
Collapse
Affiliation(s)
- Linna Yu
- People’s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China;
| | - Yi Jin
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| | - Mingjie Song
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
| | - Yu Zhao
- People’s Hospital of Qianxinan Buyi and Miao Minority Autonomous Prefecture, Xingyi 562400, China;
- Correspondence: (Y.Z.); (H.Z.)
| | - Huaqing Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), State Key Laboratory of Natural Medicines, Department of Pharmaceutics, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China; (Y.J.); (M.S.)
- Correspondence: (Y.Z.); (H.Z.)
| |
Collapse
|
9
|
Schwager J, Bompard A, Raederstorff D, Hug H, Bendik I. Resveratrol and ω-3 PUFAs Promote Human Macrophage Differentiation and Function. Biomedicines 2022; 10:biomedicines10071524. [PMID: 35884829 PMCID: PMC9313469 DOI: 10.3390/biomedicines10071524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Monocytes differentiate into M1 and M2 macrophages, which are classically activated by microbial products such as LPS or IFN-γ and interleukins (e.g., the anti-inflammatory and Th2 promoting IL-4), respectively. The contribution of nutrients or nutrient-based substances such as ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and resveratrol (Res) on the differentiation and function of M1 and M2 macrophages was evaluated. THP-1 cells and peripheral blood mononuclear cells (PBMCs) were differentiated into M1 and M2 cells and activated with LPS/IFN-γ or IL-4/IL-13. Macrophage lineage specific surface determinants (e.g., CD11b, CD11c, CD14, CD206, CD209, CD274, HLA-DR, CCR7, CCR2) were analysed by cytofluorometry. Res and ω-3 PUFAs altered CD14, CD206, CD274 and HL-DR surface expression patterns in M1 and M2 macrophages differentiated from PBMC. LPS/IFN-γ or IL-14/IL-13 activated macrophages subpopulations, which secreted cytokines and chemokines as measured by multiplex ELISA. Res and ω-3 PUFA reduced IL-1β, IL-6, TNF-α, CXCL10/IP-10, CCL13/MCP-4 and CCL20/MIP-3α in LPS/IFN-γ activated human leukaemia THP-1 cells, which is indicative of a dampening effect on M1 macrophages. However, Res increased M1 prototypic cytokines such as IL-1β or IL-6 in macrophages derived from PBMCs and also modified the expression of IL-12p70. Collectively, Res and ω-3 PUFAs distinctly promoted the differentiation and function of M1 and M2 macrophages. We conclude that these substances strengthen the macrophage-mediated effects on the innate and adaptive immune response.
Collapse
Affiliation(s)
- Joseph Schwager
- DSM, HNC, Innovation, Global R&D Center, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland; (D.R.); (H.H.); (I.B.)
- Correspondence: ; Tel.: +41-79-488-0905
| | - Albine Bompard
- DSM, HNB, BDT, Toxicology & Kinetics, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland;
| | - Daniel Raederstorff
- DSM, HNC, Innovation, Global R&D Center, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland; (D.R.); (H.H.); (I.B.)
| | - Hubert Hug
- DSM, HNC, Innovation, Global R&D Center, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland; (D.R.); (H.H.); (I.B.)
| | - Igor Bendik
- DSM, HNC, Innovation, Global R&D Center, Wurmisweg 567, CH-4303 Kaiseraugst, Switzerland; (D.R.); (H.H.); (I.B.)
| |
Collapse
|