1
|
Hamid K, Bin Mukhlish MZ, Uddin MT. Sunlight-activated heterostructure MoS 2/CdS nanocomposite photocatalyst with enhanced photocatalytic activity: band alignment and mechanism study. RSC Adv 2024; 14:38908-38923. [PMID: 39654911 PMCID: PMC11627252 DOI: 10.1039/d4ra06857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024] Open
Abstract
A high recombination rate is a major limiting factor in photocatalysis. Mitigating recombination through material engineering and photocatalyst optimization is key to enhancing photocatalytic performance. In this study, a heterostructure MoS2/CdS nanocomposite was synthesized through a hydrothermal method in a Teflon-lined autoclave subjected to a temperature of 200 °C for 16 hours. The resulting photocatalysts were characterized using a variety of techniques to understand their structural, surface, and optical properties. The photocatalytic activity of the as-synthesized photocatalysts was investigated by degrading methyl orange dye under both sunlight and visible light irradiation. Regardless of its MoS2 content, the heterostructure MoS2/CdS NC exhibited enhanced degradation efficiency relative to that of pure CdS, MoS2, and commercial TiO2 P25, with 5 wt% MoS2/CdS NCs exhibiting the highest degradation performance among all the evaluated photocatalysts. This behavior was justified by improved charge separation and reduced charge recombination, which were attributed to the valence band and conduction band offsets at the MoS2/CdS interface, as evidenced by band alignment study. The enhanced charge separation and reduced charge recombination were further validated by photoluminescence (PL), electrochemical impedance spectroscopy (EIS) and linear sweep voltammetry (LSV) measurements. Furthermore, an active species trapping experiment confirmed that electron transfer to oxygen and the subsequent formation of superoxide anions (O2 -) radical play the most significant roles in photocatalytic degradation under visible light illumination. Finally, the ability to reuse the MoS2/CdS NCs multiple times without substantial loss of activity evidenced their stability, thus paving the way for advancements in large-scale environmental remediation and other industrial applications.
Collapse
Affiliation(s)
- Kaysar Hamid
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology Sylhet 3100 Bangladesh
| | - Muhammad Zobayer Bin Mukhlish
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology Sylhet 3100 Bangladesh
| | - Md Tamez Uddin
- Department of Chemical Engineering and Polymer Science, Shahjalal University of Science and Technology Sylhet 3100 Bangladesh
| |
Collapse
|
2
|
Chen Y, Wang X, Liu B, Zhang Y, Zhao Y, Wang S. Directional regulation of reactive oxygen species in titanium dioxide boosting the photocatalytic degradation performance of azo dyes. J Colloid Interface Sci 2024; 673:275-283. [PMID: 38875793 DOI: 10.1016/j.jcis.2024.06.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
It has been widely accepted that the generation of reactive oxygen species such as superoxide radical, hydroxyl radical, and hydrogen peroxide during photocatalysis is responsible for the degradation of azo dyes. However, it is unclear which reactive oxygen species primarily contributes to the degradation efficiency of azo dyes. Here, we demonstrate that the directional regulation of reactive oxygen species in titanium dioxide (TiO2) to form superoxide radicals by ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) can significantly improve the degradation performance of methyl orange. The optimized addition of EDTA-2Na can completely degrade azo dyes such as methyl orange, acid orange and alkaline orange at a concentration of 10 mg/L in about 20 min, which is not only higher than that achieved by pristine TiO2 under Xe lamp light but also far superior to the reported degradation efficiency of modified TiO2. Even under natural sunlight, this strategy can also effectively decompose azo dyes, demonstrating the great potential for practical water treatment using low-cost TiO2 photocatalysts.
Collapse
Affiliation(s)
- Yangyang Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Boyan Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yingjuan Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yiping Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Songcan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| |
Collapse
|
3
|
Chen YQ, Zhu YJ, Xiong ZC. Ultralong Nanowires of Cadmium Phosphate Hydroxide Synthesized Using a Cadmium Oleate Precursor Hydrothermal Method and Sulfidation Conversion to Ultralong CdS Nanowires. Molecules 2024; 29:549. [PMID: 38276628 PMCID: PMC10818987 DOI: 10.3390/molecules29020549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Ultralong nanowires with ultrahigh aspect ratios exhibit high flexibility, and they are promising for applications in various fields. Herein, a cadmium oleate precursor hydrothermal method is developed for the synthesis of ultralong nanowires of cadmium phosphate hydroxide. In this method, water-soluble cadmium salt is used as the cadmium source, water-soluble phosphate is used as the phosphorus source, and sodium oleate is adopted as a reactant to form cadmium oleate precursor and as a structure-directing agent. By using this method, ultralong nanowires of cadmium phosphate hydroxide are successfully synthesized using CdCl2, sodium oleate, and NaH2PO4 as reactants in an aqueous solution by hydrothermal treatment at 180 °C for 24 h. In addition, a new type of flexible fire-resistant inorganic paper with good electrical insulation performance is fabricated using ultralong nanowires of cadmium phosphate hydroxide. As an example of the extended application of this synthetic method, ultralong nanowires of cadmium phosphate hydroxide can be converted to ultralong CdS nanowires through a convenient sulfidation reaction. In this way, ultralong CdS nanowires are successfully synthesized by simple sulfidation of ultralong nanowires of cadmium phosphate hydroxide under mild conditions. The as-prepared ultralong nanowires of cadmium phosphate hydroxide are promising for applications as the precursors and templates for synthesizing other inorganic ultralong nanowires and have wide applications in various fields.
Collapse
Affiliation(s)
- Yu-Qiao Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Tiwari S, Yadav P, Ganguli AK. Enhancing the activity and stability of Cu 2O nanorods via coupling with a NaNbO 3/SnS 2 heterostructure for photoelectrochemical water-splitting. NEW J CHEM 2023. [DOI: 10.1039/d3nj00684k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
We synthesized a stable copper-based heterostructure catalyst, NaNbO3/SnS2/Cu2O for photoelectrochemical water-splitting applications with improved activity, stability, and inhibited photocorrosion in Cu2O.
Collapse
Affiliation(s)
- Shalini Tiwari
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Priyanka Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Ashok K. Ganguli
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
5
|
Composite CdS/TiO2 Powders for the Selective Reduction of 4-Nitrobenzaldehyde by Visible Light: Relation between Preparation, Morphology and Photocatalytic Activity. Catalysts 2022. [DOI: 10.3390/catal13010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A series of composite CdS/TiO2 powders was obtained by nucleation of TiO2 on CdS nanoseeds. This combination presents the appropriate band edge position for photocatalytic redox reactions: visible light irradiation of CdS allows the injection of electrons into dark TiO2, increasing the lifetimes of separated charges. The electrons have been used for the quantitative photoreduction of 4-nitrobenzaldehyde to 4-aminobenzaldehyde, whose formation was pointed out by 1H NMR and ESI-MS positive ion mode. Concomitant sacrificial oxidation of 2-propanol, which was also the proton source, occurred. The use of characterization techniques (XRD, N2 adsorption-desorption) evidenced the principal factors driving the photocatalytic reaction: the nanometric size of anatase crystalline domains, the presence of dispersed CdS to form an extended active junction CdS/anatase, and the presence of mesopores as nanoreactors. The result is an efficient photocatalytic system that uses visible light. In addition, the presence of TiO2 in combination with CdS improves the stability of the photoactive material, enabling its recyclability.
Collapse
|
6
|
Synthesis of Durian-like TiO2@CdS Core-Shell Structure and Study on H2 Generation Properties. Catalysts 2022. [DOI: 10.3390/catal12101211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Novel durian-like TiO2@CdS core-shell particles were synthesized through a solvothermal method in ethylenediamine solution and the obtained nanocomposites were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and transmission electron microscopic (TEM) techniques. It can be seen from the characterization that the synthesized core-shell structured particles show uniform size. The possible formation mechanism of TiO2@CdS core-shell particles is also presented schematically. CdS grows on the TiO2 surface in the form of nanorods, turning the TiO2@CdS composite particles into durian-like structures. The durian-like TiO2@CdS core-shell particles prepared in the experiment can overcome the disadvantages of TiO2 and CdS, respectively. They not only produce a higher yield of H2 than pure TiO2; the durian-like TiO2@CdS nanostructures formed at 180 °C for 16 h produced 2.5 times as much H2 as did TiO2, also showing enhanced stability as compared with pure CdS.
Collapse
|
7
|
Fawzi T, Rani S, Roy SC, Lee H. Photocatalytic Carbon Dioxide Conversion by Structurally and Materially Modified Titanium Dioxide Nanostructures. Int J Mol Sci 2022; 23:ijms23158143. [PMID: 35897719 PMCID: PMC9330242 DOI: 10.3390/ijms23158143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022] Open
Abstract
TiO2 has aroused considerable attentions as a promising photocatalytic material for decades due to its superior material properties in several fields such as energy and environment. However, the main dilemmas are its wide bandgap (3–3.2 eV), that restricts the light absorption in limited light wavelength region, and the comparatively high charge carrier recombination rate of TiO2, is a hurdle for efficient photocatalytic CO2 conversion. To tackle these problems, lots of researches have been implemented relating to structural and material modification to improve their material, optical, and electrical properties for more efficient photocatalytic CO2 conversion. Recent studies illustrate that crystal facet engineering could broaden the performance of the photocatalysts. As same as for nanostructures which have advantages such as improved light absorption, high surface area, directional charge transport, and efficient charge separation. Moreover, strategies such as doping, junction formation, and hydrogenation have resulted in a promoted photocatalytic performance. Such strategies can markedly change the electronic structure that lies behind the enhancement of the solar spectrum harnessing. In this review, we summarize the works that have been carried out for the enhancement of photocatalytic CO2 conversion by material and structural modification of TiO2 and TiO2-based photocatalytic system. Moreover, we discuss several strategies for synthesis and design of TiO2 photocatalysts for efficient CO2 conversion by nanostructure, structure design of photocatalysts, and material modification.
Collapse
Affiliation(s)
- Tarek Fawzi
- Department of Photonics, National Sun Yat-sen University, No. 70, Lien-Hai Rd, Kaohsiung 80424, Taiwan; or
| | - Sanju Rani
- Department of Physics, SRM Institute of Science and Technology, Ramapuram Campus, Chennai 600089, Tamil Nadu, India;
| | - Somnath C. Roy
- Semiconducting Oxide Materials, Nanostructures and Tailored Heterojunction (SOMNaTH) Lab, Functional Oxides Research Group (FORG) and 2D Materials and Innovation Centre, Department of Physics, IIT Madras, Chennai 600036, Tamil Nadu, India;
| | - Hyeonseok Lee
- Department of Photonics, National Sun Yat-sen University, No. 70, Lien-Hai Rd, Kaohsiung 80424, Taiwan; or
- Correspondence: ; Tel.: +886-7-525-2000 (ext. 4473)
| |
Collapse
|
8
|
Visible Light Reductive Photocatalysis of Azo-Dyes with n-n Junctions Based on Chemically Deposited CdS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092924. [PMID: 35566275 PMCID: PMC9105509 DOI: 10.3390/molecules27092924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 11/21/2022]
Abstract
New composite photocatalysts have been obtained by chemical bath deposition of CdS on top of either nanostructured crystalline ZrO2 or TiO2 films previously deposited on conductive glass FTO. Their morphological, photoelectrochemical and photochemical properties have been investigated and compared. Time resolved spectroscopic, techniques show that in FTO/TiO2/CdS films the radiative recombination of charges, separated by visible illumination of CdS, is faster than in FTO/ZrO2/CdS, evidencing that carrier dynamics in the two systems is different. Photoelectrochemical investigation evidence a suppression of electron collection in ZrO2/CdS network, whereas electron injection from CdS to TiO2 is very efficient since trap states of TiO2 act as a reservoir for long lived electrons storage. This ability of FTO/TiO2/CdS films is used in the reductive cleavage of N=N bonds of some azo-dyes by visible light irradiation, with formation and accumulation of reduced aminic intermediates, identified by ESI-MS analysis. Needed protons are provided by sodium formate, a good hole scavenger that leaves no residue upon oxidation. FTO/TiO2/CdS has an approximately 100 meV driving force larger than FTO/ZrO2/CdS under illumination for azo-dye reduction and it is always about 10% more active than the seconds. The films showed very high stability and recyclability, ease of handling and recovering.
Collapse
|
9
|
Microflowery, Microspherical, and Fan-Shaped TiO2 Crystals via Hierarchical Self-Assembly of Nanorods with Exposed Specific Crystal Facets and Enhanced Photocatalytic Performance. Catalysts 2022. [DOI: 10.3390/catal12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In this paper, khaki titanium dioxide (TiO2) crystals via hierarchical self-assembly of nanorods with different morphologies and specific exposed crystal facets were prepared for the first time by using a TiCl3 treatment process in the presence and absence of morphology-controlling agents. The crystal structure, morphology, microstructure, specific surface area, and separation efficiency of photogenerated electron-hole pairs of the synthesized TiO2 crystals were characterized. The photocatalytic and recycled performances of the synthesized TiO2 crystals in the presence of shape-controlling agents, such as ammonium sulfate (AS), ammonium carbonate (AC), and urea, and the absence of shape-controlling agents (the obtained TiO2 crystals were expressed as AS-TiO2, AC-TiO2, urea-TiO2, and No-TiO2, respectively) were evaluated and compared with the commercial TiO2 (CM-TiO2) crystals. The AS-TiO2 microspheres with exposed uncertain facets exhibited enhanced photocatalytic activity for the degradation of methylene blue solution, which can be attributed to the combined effect of the anatase phase structure, relatively larger specific surface area, and the effective separation of the photogenerated electron-holes.
Collapse
|