1
|
Panchalingam S, Kasivelu G, Jayaraman M. Computational identification and molecular dynamics simulation of potential circularRNA derived peptide from gene expression profile of Rheumatoid arthritis, Alzheimer's disease, and Atrial fibrillation. J Biomol Struct Dyn 2024; 42:7699-7714. [PMID: 37526241 DOI: 10.1080/07391102.2023.2241535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
The two most serious global health challenges confronting human society today are autoimmune disorders (AIDs) and neurological diseases (NDs), both of which shorten people's lives and worsen the situation. Despite their extensive impact, statistics show that AIDs is associated with a higher risk of ND. Circular RNAs (circRNAs) are critical in several illnesses and disorders, especially AID and ND. Therefore, the present study focused on understanding the underlying causes of the pathophysiology of diseases such as AID and ND through in silico-based research. In order to determine how circRNAs are related to various disease pathways, this study examined the gene expression data sets for Rheumatoid arthritis (RA), Alzheimer's disease (AD), and atrial fibrillation (AF). Our study identified and analyzed two circRNAs, their respective host genes (DHTKD1 and RAN) and their related miRNAs, which could serve as potential markers for treating disorders like myotonic dystrophy type 1, spinocerebellar ataxia and fragile X syndrome. Further, the circRNA-derived peptide was identified and analysed with the molecular dynamics simulation (MDS) followed by a principal component (PC) based free energy landscape (FEL) profile. The computational results obtained here provide a basis for the development of therapeutics against AD, RA and AF. Moreover, further functional studies are needed to validate their role in disease aetiology and to provide a detailed understanding of their association with AID and ND.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, India
| | - Manikandan Jayaraman
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
2
|
Doroszkiewicz J, Mroczko J, Winkel I, Mroczko B. Metabolic and Immune System Dysregulation: Unraveling the Connections between Alzheimer's Disease, Diabetes, Inflammatory Bowel Diseases, and Rheumatoid Arthritis. J Clin Med 2024; 13:5057. [PMID: 39274269 PMCID: PMC11396443 DOI: 10.3390/jcm13175057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/16/2024] Open
Abstract
Alzheimer's disease (AD), diabetes mellitus (DM), inflammatory bowel diseases (IBD), and rheumatoid arthritis (RA) are chronic conditions affecting millions globally. Despite differing clinical symptoms, these diseases share pathophysiological mechanisms involving metabolic and immune system dysregulation. This paper examines the intricate connections between these disorders, focusing on shared pathways such as insulin resistance, lipid metabolism dysregulation, oxidative stress, and chronic inflammation. An important aspect is the role of amyloid-beta plaques and tau protein tangles, which are hallmark features of AD. These protein aggregates are influenced by metabolic dysfunction and inflammatory processes similar to those seen in DM, RA, and IBD. This manuscript explores how amyloid and tau pathologies may be exacerbated by shared metabolic and immune dysfunction. Additionally, this work discusses the gut-brain axis and the influence of gut microbiota in mediating disease interactions. Understanding these commonalities opens new avenues for multi-targeted therapeutic approaches that address the root causes rather than merely the symptoms of these conditions. This integrative perspective could lead to more effective interventions and improved patient outcomes, emphasizing the importance of a unified approach in managing these interconnected diseases.
Collapse
Affiliation(s)
- Julia Doroszkiewicz
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Jan Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Izabela Winkel
- Dementia Disorders Centre, Medical University of Wroclaw, 50-425 Scinawa, Poland
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Biochemical Diagnostics, Medical University of Bialystok, 15-269 Bialystok, Poland
| |
Collapse
|
3
|
Zhang F, Zhang W. Research progress in Alzheimer's disease and bone-brain axis. Ageing Res Rev 2024; 98:102341. [PMID: 38759893 DOI: 10.1016/j.arr.2024.102341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Alzheimer's disease (AD) is the most common type of cognitive impairment. AD is closely related to orthopedic diseases, such as osteoporosis and osteoarthritis, in terms of epidemiology and pathogenesis. Brain and bone tissues can regulate each other in different manners through bone-brain axis. This article reviews the research progress of the relationship between AD and orthopedic diseases, bone-brain axis mechanisms of AD, and AD therapy by targeting bone-brain axis, in order to deepen the understanding of bone-brain communication, promote early diagnosis and explore new therapy for AD patients.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Center for Cognitive Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
4
|
Li GS, Yang YZ, Ma GR, Li PF, Cheng QH, Zhang AR, Zhang ZZ, Zhang FK, Yang X, Fan H, Guo HZ. Rheumatoid arthritis is a protective factor against Alzheimer's disease: a bidirectional two-sample Mendelian randomization study. Inflammopharmacology 2024; 32:863-871. [PMID: 38151584 DOI: 10.1007/s10787-023-01397-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/14/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Epidemiological evidence suggests that there is an association between rheumatoid arthritis (RA) and Alzheimer's disease (AD). However, the causal relationship between RA and AD remains unclear. Therefore, this study aimed to investigate the causal relationship between RA and AD. METHODS Using publicly available genome-wide association study datasets, bidirectional two-sample Mendelian randomization (TSMR) was performed using the inverse-variance weighted (IVW), weighted median, MR‒Egger regression, simple mode, and weighted mode methods. RESULTS The results of MR for the causal effect of RA on AD (IVW, odds ratio [OR] = 0.959, 95% confidence interval [CI]: 0.941-0.978, P = 2.752E-05; weighted median, OR = 0.960, 95% CI: 0.937-0.984, P = 0.001) revealed a causal association between genetic susceptibility to RA and an increased risk of AD. The results of MR for the causal effect of AD on RA (IVW, OR = 0.978, 95% CI: 0.906-1.056, P = 0.576; weighted median, OR = 0.966, 95% CI: 0.894-1.043, P = 0.382) indicated that there was no causal association between genetic susceptibility to AD and an increased risk of RA. CONCLUSIONS The results of this two-way two-sample Mendelian randomization analysis revealed a causal association between genetic susceptibility to RA and a reduced risk of AD but did not reveal a causal association between genetic susceptibility to AD and an increased or reduced risk of RA.
Collapse
Affiliation(s)
- Guo-Shuai Li
- Gansu Wuwei Hospital of Traditional Chinese Medicine, Wuwei, China
| | - Yong-Ze Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Guo-Rong Ma
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Peng-Fei Li
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Qing-Hao Cheng
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - An-Ren Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Zhuang-Zhuang Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Fu-Kang Zhang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Xin Yang
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Hua Fan
- First Clinical Medical College of Gansu, University of Traditional Chinese Medicine, Lanzhou, China
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China
| | - Hong-Zhang Guo
- People's Hospital of Gansu Province, 204 Donggang West Road, Chengguan District, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Brooks WH. Polyamine Dysregulation and Nucleolar Disruption in Alzheimer's Disease. J Alzheimers Dis 2024; 98:837-857. [PMID: 38489184 DOI: 10.3233/jad-231184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
A hypothesis of Alzheimer's disease etiology is proposed describing how cellular stress induces excessive polyamine synthesis and recycling which can disrupt nucleoli. Polyamines are essential in nucleolar functions, such as RNA folding and ribonucleoprotein assembly. Changes in the nucleolar pool of anionic RNA and cationic polyamines acting as counterions can cause significant nucleolar dynamics. Polyamine synthesis reduces S-adenosylmethionine which, at low levels, triggers tau phosphorylation. Also, polyamine recycling reduces acetyl-CoA needed for acetylcholine, which is low in Alzheimer's disease. Extraordinary nucleolar expansion and/or contraction can disrupt epigenetic control in peri-nucleolar chromatin, such as chromosome 14 with the presenilin-1 gene; chromosome 21 with the amyloid precursor protein gene; chromosome 17 with the tau gene; chromosome 19 with the APOE4 gene; and the inactive X chromosome (Xi; aka "nucleolar satellite") with normally silent spermine synthase (polyamine synthesis) and spermidine/spermine-N1-acetyltransferase (polyamine recycling) alleles. Chromosomes 17, 19 and the Xi have high concentrations of Alu elements which can be transcribed by RNA polymerase III if positioned nucleosomes are displaced from the Alu elements. A sudden flood of Alu RNA transcripts can competitively bind nucleolin which is usually bound to Alu sequences in structural RNAs that stabilize the nucleolar heterochromatic shell. This Alu competition leads to loss of nucleolar integrity with leaking of nucleolar polyamines that cause aggregation of phosphorylated tau. The hypothesis was developed with key word searches (e.g., PubMed) using relevant terms (e.g., Alzheimer's, lupus, nucleolin) based on a systems biology approach and exploring autoimmune disease tautology, gaining synergistic insights from other diseases.
Collapse
|
6
|
He SY, Su WM, Wen XJ, Lu SJ, Cao B, Yan B, Chen YP. Non-Genetic Risk Factors of Alzheimer's Disease: An Updated Umbrella Review. J Prev Alzheimers Dis 2024; 11:917-927. [PMID: 39044503 PMCID: PMC11266231 DOI: 10.14283/jpad.2024.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/09/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by intricate genetic and environmental etiology. The objective of this study was to identify robust non-genetic risk factors for AD through an updated umbrella review. METHODS We conducted a comprehensive search of meta-analyses and systematic reviews on non-genetic risk factors associated with AD in PubMed, Cochrane, Embase, and Ovid Medline up to June 30, 2023. After collecting data, we estimated the summary effect size and their 95% confidence intervals. The degree of heterogeneity between studies was assessed using I2 statistics and a 95% prediction interval was determined. Additionally, we evaluated potential excess significant bias and small study effects within the selected candidate studies. RESULTS The umbrella review encompassed a total of 53 eligible papers, which included 84 meta-analyses covering various factors such as lifestyle, diet, environmental exposures, comorbidity or infections, drugs, and biomarkers. Based on the evidence classification criteria employed in this study, two factors as convincing evidence (Class I), including rheumatoid arthritis (RA), potentially reduced the risk of AD, but diabetes significantly increased the risk of AD. Furthermore, three factors as highly suggestive evidence (Class II), namely depression, high homocysteine, and low folic acid level, potentially increased the risk of AD. CONCLUSION Our findings highlight several risk factors associated with AD that warrant consideration as potential targets for intervention. However, it is crucial to prioritize the identified modifiable risk factors, namely rheumatoid arthritis, diabetes, depression, elevated homocysteine levels, and low folic acid levels to effectively address this complex neurodegenerative disorder.
Collapse
Affiliation(s)
- S.-Y. He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - W.-M. Su
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - X.-J. Wen
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - S.-J. Lu
- Department of Respiratory, The Fourth People’s Hospital of Chengdu, Mental Health Center of Chengdu, Chengdu, Sichuan, 610036 China
| | - B. Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Bo Yan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| | - Yong-Ping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041 China
| |
Collapse
|
7
|
Weaver DF. Thirty Risk Factors for Alzheimer's Disease Unified by a Common Neuroimmune-Neuroinflammation Mechanism. Brain Sci 2023; 14:41. [PMID: 38248256 PMCID: PMC10813027 DOI: 10.3390/brainsci14010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/23/2024] Open
Abstract
One of the major obstacles confronting the formulation of a mechanistic understanding for Alzheimer's disease (AD) is its immense complexity-a complexity that traverses the full structural and phenomenological spectrum, including molecular, macromolecular, cellular, neurological and behavioural processes. This complexity is reflected by the equally complex diversity of risk factors associated with AD. However, more than merely mirroring disease complexity, risk factors also provide fundamental insights into the aetiology and pathogenesis of AD as a neurodegenerative disorder since they are central to disease initiation and subsequent propagation. Based on a systematic literature assessment, this review identified 30 risk factors for AD and then extended the analysis to further identify neuroinflammation as a unifying mechanism present in all 30 risk factors. Although other mechanisms (e.g., vasculopathy, proteopathy) were present in multiple risk factors, dysfunction of the neuroimmune-neuroinflammation axis was uniquely central to all 30 identified risk factors. Though the nature of the neuroinflammatory involvement varied, the activation of microglia and the release of pro-inflammatory cytokines were a common pathway shared by all risk factors. This observation provides further evidence for the importance of immunopathic mechanisms in the aetiopathogenesis of AD.
Collapse
Affiliation(s)
- Donald F Weaver
- Krembil Research Institute, University Health Network, Departments of Medicine, Chemistry, Pharmaceutical Sciences, University of Toronto, Toronto, ON M5T 0S8, Canada
| |
Collapse
|
8
|
Xia P, Ma H, Chen J, Liu Y, Cui X, Wang C, Zong S, Wang L, Liu Y, Lu Z. Differential expression of pyroptosis-related genes in the hippocampus of patients with Alzheimer's disease. BMC Med Genomics 2023; 16:56. [PMID: 36918839 PMCID: PMC10012531 DOI: 10.1186/s12920-023-01479-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/06/2023] [Indexed: 03/15/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive, neurodegenerative disorder with insidious onset. Some scholars believe that there is a close relationship between pyroptosis and AD. However, studies with evidence supporting this relationship are lacking. MATERIALS AND METHODS The microarray data of AD were retrieved from the Gene Expression Omnibus (GEO) database with the datasets merged using the R package inSilicoMerging. R software package Limma was used to perform the differential expression analysis to identify the differentially expressed genes (DEGs). We further performed the enrichment analyses of the DEGs based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases to identify the metabolic pathways with a significant difference. The Gene Set Enrichment Analysis (GSEA) was applied to identify the significant pathways. The protein-protein interaction (PPI) network was constructed based on the STRING database with the hub genes identified. Quantitative real-time PCR (qRT-PCR) analyses based on HT22 cells were performed to validate the findings based on the microarray analysis. Gene expression correlation heatmaps were generated to evaluate the relationships among the genes. RESULTS A new dataset was derived by merging 4 microarray datasets in the hippocampus of AD patients in the GEO database. Differential gene expression analysis yielded a volcano plot of a total of 20 DEGs (14 up-regulated and 6 down-regulated). GO analysis revealed a group of GO terms with a significant difference, e.g., cytoplasmic vesicle membrane, vesicle membrane, and monocyte chemotaxis. KEGG analysis detected the metabolic pathways with a significant difference, e.g., Rheumatoid arthritis and Fluid shear stress and atherosclerosis. The results of the Gene Set Enrichment Analysis of the microarray data showed that gene set ALZHEIMER_DISEASE and the gene set PYROPTOSIS were both up-regulated. PPI network showed that pyroptosis-related genes were divided into two groups. In the Aβ-induced HT22 cell model, three genes (i.e., BAX, IL18, and CYCS) were revealed with significant differences. Gene expression correlation heatmaps revealed strong correlations between pyroptotic genes and AD-related genes. CONCLUSION The pyroptosis-related genes BAX, IL18, and CYCS were significantly different between AD patients and normal controls.
Collapse
Affiliation(s)
- Pengcheng Xia
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Huijun Ma
- Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, Shandong, China
| | - Jing Chen
- Discipline of Anatomy and Pathology, Shandong First Medical University, Jinan, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaolin Cui
- School of Medicine, Shandong University, Jinan, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Le Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Yun Liu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| | - Zhiming Lu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
9
|
Sharma SR, Chen Y. Rheumatoid Arthritis and Cognitive Impairment or Dementia: An Updated Review of Epidemiological Data. J Alzheimers Dis 2023; 95:769-783. [PMID: 37599533 DOI: 10.3233/jad-230234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Rheumatoid arthritis (RA) is hypothesized to be associated with cognitive impairment and dementia, including Alzheimer's disease, through shared biological processes related to inflammation. It is important to elucidate this potential relationship as both conditions confer increased morbidity and even mortality among older adults. This narrative review provides a survey of recent epidemiologic studies, examining the association between rheumatoid arthritis and either dementia or cognitive impairment. Sixteen studies were included after searching in PubMed and EMBASE. All were published between 2012 and 2022 and were characterized as epidemiologic studies (either cohort, cross-sectional, or case-control). Studies varied in location, design, measures of exposure and outcome, and covariates considered. Of the 16 studies included, only five found statistically significant positive associations between RA and dementia or cognitive impairment. One study found an inverse relationship, while five studies found no associations at all. The remaining five studies found variable statistically significant associations between demographic or RA disease characteristics and cognitive measures. Given these mixed findings, further studies at both the mechanistic and population level are needed to clarify the possible shared biological underpinnings of these two conditions.
Collapse
Affiliation(s)
| | - Yu Chen
- Department of Population Health, Division of Epidemiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Yeung CHC, Au Yeung SL, Schooling CM. Association of autoimmune diseases with Alzheimer's disease: A mendelian randomization study. J Psychiatr Res 2022; 155:550-558. [PMID: 36198219 DOI: 10.1016/j.jpsychires.2022.09.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/18/2022] [Accepted: 09/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alzheimer's disease may have an autoimmune component, but the association is unclear. OBJECTIVE The objective of this Mendelian randomization (MR) study was to evaluate the association of liability to autoimmune diseases with Alzheimer's disease. METHODS A systematic search was done using PubMed to identify autoimmune diseases that have been suggested as associated with Alzheimer's disease. Genetic predictors of these autoimmune diseases were obtained from the largest and most recent genome-wide association studies (GWAS). Genetic associations with clinically-diagnosed Alzheimer's disease were obtained from the International Genomics of Alzheimer's Project GWAS (21982 cases; 41944 controls); and with parental and sibling history of Alzheimer's disease from the UK Biobank GWAS (27696 maternal, 14338 paternal and 2171 sibling cases). MR estimates were obtained using inverse variance weighting, MR-Egger and weighted median. To address possible selection bias due to inevitably recruiting only survivors, the analysis was repeated in younger people, i.e., UK Biobank siblings and adjusting for competing risk of Alzheimer's disease. RESULTS Of the 7 autoimmune diseases considered, liability to psoriasis and sarcoidosis were not associated with Alzheimer's disease. Some evidence was found for liability to multiple sclerosis being associated with higher risk and liability to Sjogren's syndrome with lower risk of Alzheimer's disease. Associations found for liability to giant cell arteritis, type 1 diabetes and rheumatoid arthritis were inconsistent in sensitivity analyses. CONCLUSION Liability to multiple sclerosis and Sjogren's syndrome could be associated with Alzheimer's disease. The underlying mechanisms, such as the role of myelin and neuroinflammation, should be further investigated.
Collapse
Affiliation(s)
- Chris Ho Ching Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Shiu Lun Au Yeung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - C Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Graduate School of Public Health and Health Policy, City University of New York, New York, USA
| |
Collapse
|
11
|
Łuc M, Woźniak M, Rymaszewska J. Neuroinflammation in Dementia—Therapeutic Directions in a COVID-19 Pandemic Setting. Cells 2022; 11:cells11192959. [PMID: 36230921 PMCID: PMC9562181 DOI: 10.3390/cells11192959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Although dementia is a heterogenous group of diseases, inflammation has been shown to play a central role in all of them and provides a common link in their pathology. This review aims to highlight the importance of immune response in the most common types of dementia. We describe molecular aspects of pro-inflammatory signaling and sources of inflammatory activation in the human organism, including a novel infectious agent, SARS-CoV-2. The role of glial cells in neuroinflammation, as well as potential therapeutic approaches, are then discussed. Peripheral immune response and increased cytokine production, including an early surge in TNF and IL-1β concentrations activate glia, leading to aggravation of neuroinflammation and dysfunction of neurons during COVID-19. Lifestyle factors, such as diet, have a large impact on future cognitive outcomes and should be included as a crucial intervention in dementia prevention. While the use of NSAIDs is not recommended due to inconclusive results on their efficacy and risk of side effects, the studies focused on the use of TNF antagonists as the more specific target in neuroinflammation are still very limited. It is still unknown, to what degree neuroinflammation resulting from COVID-19 may affect neurodegenerative process and cognitive functioning in the long term with ongoing reports of chronic post-COVID complications.
Collapse
Affiliation(s)
- Mateusz Łuc
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence:
| | - Marta Woźniak
- Department of Pathology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Joanna Rymaszewska
- Department of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| |
Collapse
|