1
|
Abou Taleb MF, Aljowni MA, Parveen H, Mukhtar S. Green coagulation and flocculation: Scenedesmus algal extract-loaded chitosan/poly(vinyl alcohol) cryogel for effective water treatment. Int J Biol Macromol 2025; 290:138739. [PMID: 39706408 DOI: 10.1016/j.ijbiomac.2024.138739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
This study presents an eco-friendly approach to treat contaminated and turbid water through the development of cryogels loaded with bioactive compounds derived from Scenedesmus algal extract (ScAE) based on chitosan/poly(vinyl alcohol) (Cs/PVA) matrix. Scenedesmus sp., a green microalga known for its bioactive properties, was cultivated and processed to obtain extracts with coagulation potential. This extract was incorporated into cryogel at concentrations of 2, 4, 6, and 8 mL to improve coagulation and flocculation processes. Physicochemical analyses, including Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM), confirmed the successful synthesis and structural integrity of ScAE-loaded cryogels, demonstrating uniform morphology, high porosity, and enhanced mechanical strength with increasing ScAE concentration. Significant results highlight the effectiveness of a 50 mg ScAE-loaded cryogel, which achieved significant reductions in turbidity, from 6 NTU to 1.6 NTU, and total suspended solids (TSS), from 16 mg/L to 6 mg/L, in water samples. The highest concentration cryogel (ScAE-8) also demonstrated a 62 % reduction in nitrate levels, underscoring its capability for broader contaminant removal. These results reveal that the ScAE-loaded cryogels not only provide an effective, biodegradable alternative to conventional chemical coagulants such as alum but also align with green chemistry approaches, potentially providing a sustainable solution for the large-scale water treatment facilities while lowering the negative environmental consequnces.
Collapse
Affiliation(s)
- Manal F Abou Taleb
- Department of Chemistry, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Maha Ali Aljowni
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Humaira Parveen
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sayeed Mukhtar
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| |
Collapse
|
2
|
El-Nemr MA, Aigbe UO, Ukhurebor KE, Obodo K, Awe AA, Hassaan MA, Ragab S, El Nemr A. Modelling of a new form of nitrogen doped activated carbon for adsorption of various dyes and hexavalent chromium ions. Sci Rep 2025; 15:3896. [PMID: 39890988 PMCID: PMC11785975 DOI: 10.1038/s41598-025-87398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/20/2025] [Indexed: 02/03/2025] Open
Abstract
This study reports a new form of nitrogen-doped activated carbon (AC5-600) produced from a blend of sawdust (SD) and fish waste (FW) treated with urea and ZnCl2 for the adsorption of toxic metals and dyes. The adsorbent was also explored in the treatment of acid brown 14 (AB14) and acid orange 7 (AO7) dye molecules and hexavalent chromium (Cr6+) ions. The pH controls the sorption of individual contaminants, with an observed superlative % of individual contaminants removed at pH 1.5. Removal at pH was credited to the electrostatic interaction (EI) between the anion dyes and Cr6+ species at this pH and the protonated sites accessible on the AC5-600 adsorbent surface. Based on the error values obtained from the non-linear modelling (NLM) of the kinetic and isotherm models, the Elovich (ELM-AB14 and Cr6+), pseudo-first- (PFOM-AB14) and second-order models (PSOM-AB14, AO7 and Cr6+) and the Freundlich (FRHM) model were found to ideally define the sorption of the various contaminants. The determined maximum sorption capacity (Qm) based on the NLM was 1114, 1929 and 318 mg.g-1 for AB14 dye, AO7 dye and Cr6+ ions, respectively. Based on the computational adsorption calculations, the sorption energies for the AO7 and AB14 dyes were -4.492 and -8.090 eV and 2.563, 1.789, 1.226 and 1.928 eV for Cr2, CrO3, CrO4, and CrO4H species. AB14 and AO7 dyes and Cr6+ ions adsorption to synthesised AC5-600 was predicted employing the response surface methodology (RSM) and artificial neural network (ANN) models. The ANN model was more effective in predicting AB14 and AO7 dyes and Cr6+ ions adsorption than the RSM, and it was highly applicable in the sorption process.
Collapse
Affiliation(s)
- Mohamed A El-Nemr
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Minia, Egypt
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Cape Peninsula University of Technology, Cape Town, South Africa
| | | | - Kingsley Obodo
- Center for Space Research, North-West University, Potchefstroom, 2531, South Africa
| | - Adetunji Ajibola Awe
- Department of Conservation and Marine Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| | - Mohamed A Hassaan
- Environment Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Safaa Ragab
- Environment Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Alexandria, Egypt
| | - Ahmed El Nemr
- Environment Division, National Institute of Oceanography and Fisheries, Kayet Bey, El-Anfoushy, Alexandria, Egypt.
| |
Collapse
|
3
|
Mahat SB, Abobaker MSA, Chun CNW, Wibisono Y, Ahmad AL, Omar WMW, Tajarudin HA. Scenedesmus sp. as a phycoremediation agent for heavy metal removal from landfill leachate in a comparative study: batch, continuous, and membrane bioreactor (MBR). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50443-50463. [PMID: 39093395 DOI: 10.1007/s11356-024-34461-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
Improper disposal of municipal solid waste led to the release of heavy metals into the environment through leachate accumulation, causing a range of health and environmental problems. Phycoremediation, using microalgae to remove heavy metals from contaminated water, was investigated as a promising alternative to traditional remediation methods. This study explored the potential of Scenedesmus sp. as a phycoremediation agent for heavy metal removal from landfill leachate. The study was conducted in batch, continuous, and membrane bioreactor (MBR). In the batch system, Scenedesmus sp. was added to the leachate and incubated for 15 days before the biomass was separated from the suspension. In the continuous system, Scenedesmus sp. was cultured in a flow-through system, and the leachate was continuously fed into the system with flow rates measured at 120, 150, and 180 mL/h for 27 days. The MBR system was similar to the continuous system, but it incorporated a membrane filtration step to remove suspended solids from the treated water. The peristaltic pump was calibrated to operate at five different flow rates: 0.24 L/h, 0.30 L/h, 0.36 L/h, 0.42 L/h, and 0.48 L/h for the MBR system and ran for 24 h. The results showed that Scenedesmus sp. was effective in removing heavy metals such as lead (Pb), cobalt (Co), chromium (Cr), nickel (Ni), and zinc (Zn) from landfill leachate in all three systems. The highest removal efficiency was observed for Ni, with a removal of 0.083 mg/L in the MBR and 0.068 mg/L in batch mode. The lowest removal efficiency was observed for Zn, with a removal of 0.032 mg/L in the MBR, 0.027 mg/L in continuous mode, and 0.022 mg/L in batch mode. The findings depicted that the adsorption capacity varied among the studied metal ions, with the highest capacity observed for Ni (II) and the lowest for Zn (II), reflecting differences in metal speciation, surface charge interactions, and affinity for the adsorbent material. These factors influenced the adsorption process and resulted in varying adsorption capacities for different metal ions. The study also evaluated the biomass growth of Scenedesmus sp. and found that it was significantly influenced by the initial metal concentration in the leachate. The results of this study suggest that Scenedesmus sp. can be used as an effective phycoremediation agent for removing heavy metals from landfill leachate.
Collapse
Affiliation(s)
- Siti Baizura Mahat
- Biomass Transportation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
- Bioprocess Engineering Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
| | - Mahmod Sidati Ali Abobaker
- Bioprocess Engineering Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
| | - Charles Ng Wai Chun
- Bioprocess Engineering Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
| | - Yusuf Wibisono
- Bioprocess Engineering, University of Brawijaya, Jl. Veteran, Ketawanggede, Kec. Lowokwaru, Kota Malang, Jawa Timur, 65145, Indonesia
| | - Abdul Latif Ahmad
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Malaysia
| | - Wan Maznah Wan Omar
- School of Biological Sciences, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia
| | - Husnul Azan Tajarudin
- Biomass Transportation Cluster, School of Industrial Technology, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia.
- Bioprocess Engineering Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, George Town, Penang, Malaysia.
| |
Collapse
|
4
|
Kouniba S, Benbiyi A, Zourif A, EL Guendouzi M. Optimization use of watermelon rind in the coagulation-flocculation process by Box Behnken design for copper, zinc, and turbidity removal. Heliyon 2024; 10:e30823. [PMID: 38779009 PMCID: PMC11108825 DOI: 10.1016/j.heliyon.2024.e30823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Watermelon rinds were investigated as a bio-coagulant for treating water contaminated by metals and turbidity, owing to their biodegradability and greater environmental friendliness compared to chemical coagulants. Fourier transform infrared spectroscopy, scanning electron microscopy paired with energy dispersive X-ray analysis and X-ray diffraction characterized the watermelon rinds before and after use. A Box-Behnken experimental design optimized the most influential parameters of initial pH, coagulant dose, and particle size based on response surface methodology. This analysis revealed the experimental data fit quadratic polynomial models, achieving maximum removal efficiencies of 97.51 % for zinc, 99.88 % for copper, and 99.21 % for turbidity under optimal conditions. Statistical analysis confirmed the models effectively captured the experimental data. Analysis of variance denoted the high significance of the quadratic effects of dose and pH. Removal of metal ions Zn2+ and Cu2+ was significantly impacted by these factors. The watermelon rind powder retained its coagulation efficiency after five cycles of reuse, with removal rates of 80.04 % for Zn, 88.33 % for Cu and 86.24 % for turbidity. These results demonstrate the potential of watermelon rind as an alternative coagulant for wastewater treatment. Further testing on real industrial effluents at larger scales would help assess their feasibility for real-world applications.
Collapse
Affiliation(s)
- Salma Kouniba
- Laboratory of Physical Chemistry, Material & Catalysis LCPMC, Faculty of Sciences Ben M'Sick, University of Hassan II-Casablanca, Morocco
| | - Asmaa Benbiyi
- Laboratory of Physical Chemistry, Material & Catalysis LCPMC, Faculty of Sciences Ben M'Sick, University of Hassan II-Casablanca, Morocco
| | - Ali Zourif
- Laboratory of Physical Chemistry, Material & Catalysis LCPMC, Faculty of Sciences Ben M'Sick, University of Hassan II-Casablanca, Morocco
| | - Mohamed EL Guendouzi
- Laboratory of Physical Chemistry, Material & Catalysis LCPMC, Faculty of Sciences Ben M'Sick, University of Hassan II-Casablanca, Morocco
| |
Collapse
|
5
|
Sahari NS, Shahir S, Ibrahim Z, Hasmoni SH, Altowayti WAH. Bacterial nanocellulose and its application in heavy metals and dyes removal: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:110069-110078. [PMID: 37814051 DOI: 10.1007/s11356-023-30067-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
This review discusses the application of bacterial nanocellulose (BNC) and modified BNC in treating wastewater containing heavy metals and dye contaminants. It also highlights the challenges and future perspectives of BNC and its composites. Untreated industrial effluents containing toxic heavy metals are systematically discharged into public waters. In particular, lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), zinc (Zn), and arsenic (As) are very harmful to human health and, in some cases, may lead to death. Several methods such as chemical precipitation, ion exchange, membrane filtration, coagulation, and Fenton oxidation are used to remove these heavy metals from the environment. However, these methods involve the use of numerous chemicals whilst producing high amount of toxic sludge. Meanwhile, the development of the adsorption-based technique has provided an alternative way of treating wastewater using BNC. Bacterial nanocellulose requires less energy for purification and has higher purity than plant cellulose. In general, the optimum growth parameters are crucial in BNC production. Even though native BNC can be used for the removal of heavy metals and dyes, the incorporation of other materials, such as polyethyleneimine, graphene oxide, calcium carbonate and polydopamine can improve sorption efficiencies.
Collapse
Affiliation(s)
- Nurul Syuhada Sahari
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Shafinaz Shahir
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Zaharah Ibrahim
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Siti Halimah Hasmoni
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Wahid Ali Hamood Altowayti
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| |
Collapse
|
6
|
Ngernyen Y, Petsri D, Sribanthao K, Kongpennit K, Pinijnam P, Pedsakul R, Hunt AJ. Adsorption of the non-steroidal anti-inflammatory drug (ibuprofen) onto biochar and magnetic biochar prepared from chrysanthemum waste of the beverage industry. RSC Adv 2023; 13:14712-14728. [PMID: 37197677 PMCID: PMC10184006 DOI: 10.1039/d3ra01949g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Biochar and magnetic biochar prepared from chrysanthemum waste of the beverage industry are effective adsorbents for the removal of the non-steroidal anti-inflammatory drug, ibuprofen (IBP), from aqueous systems. The development of magnetic biochar using iron chloride, overcame poor separation characteristics from the liquid phase of the powdered biochar after adsorption. Characterisation of biochars was achieved through Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), N2 adsorption/desorption porosimetry, scanning electron microscopy (SEM), electron dispersive X-ray analysis (EDX), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), moisture and ash content, bulk density, pH and zero-point charge (pHpzc). The specific surface area of non-magnetic and magnetic biochars was 220 and 194 m2 g-1, respectively. Adsorption of ibuprofen was optimised with respect to contact time (5-180 min), solution pH (2-12) and initial drug concentration (5-100 mg L-1), with equilibrium being reached in 1 hour, and the maximum ibuprofen removal occurred at pH 2 and 4 for biochar and magnetic biochars, respectively. Investigation of the adsorption kinetics was achieved through application of the pseudo-first order, pseudo-second order, Elovich and intra-particle diffusion models. Adsorption equilibrium was evaluated using Langmuir, Freundlich and Langmuir-Freundlich isotherm models. The adsorption kinetics and isotherms for both biochars are well described by pseudo-second order kinetic and Langmuir-Freundlich isotherm models, respectively, with the maximum adsorption capacity of biochar and magnetic biochar being 167 and 140 mg g-1, respectively. Chrysanthemum derived non-magnetic and magnetic biochars exhibited significant potential as sustainable adsorbents toward the removal of emerging pharmaceutical pollutants such as ibuprofen from aqueous solution.
Collapse
Affiliation(s)
- Yuvarat Ngernyen
- Biomass & Bioenergy Research Laboratory, Department of Chemical Engineering, Faculty of Engineering, Khon Kaen University Khon Kaen 40002 Thailand
| | - Decha Petsri
- Lahan Sai Ratchadaphisek School Lahansai District Buriram 31170 Thailand
| | | | | | - Palita Pinijnam
- Lahan Sai Ratchadaphisek School Lahansai District Buriram 31170 Thailand
| | - Rinrada Pedsakul
- Lahan Sai Ratchadaphisek School Lahansai District Buriram 31170 Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center, Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
7
|
Sharef HY, Jalal AF, Ibrahim BM, Fakhre N, Qader IN. New ion-imprinted polymer for selective removal of Cu 2+ ion in aqueous solution using extracted Aloe vera leaves as a monomer. Int J Biol Macromol 2023; 239:124318. [PMID: 37015282 DOI: 10.1016/j.ijbiomac.2023.124318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/14/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
The objective of this project is to create a unique type of polymer known as an ion imprinted polymer (IIP) and a non-imprinted polymer (NIP) utilizing natural waste biosorbent materials. One example of this type of waste is Aloe vera, a plant with many medicinal uses that is grown globally. Aloe vera is considered one of the most valuable medicinal plants with a wide range of applications. Extracted Aloe vera was used as functional monomers for the first time to prepare new IIPs, epichlorohydrin, and Cu2+ ion as the cross-linking agent and template, respectively. The NIP was also synthesized for comparison, without the use of the Cu2+ salt. Following polymerization, the IIP particles were cleansed of template ions through a 0.1 M EDTA leaching process, resulting in the formation of cavities within the particles, these cavities in the polymer provide selective linking zones for these specific template ions. The synthesized IIPs were characterized using the most recent identification instruments. The experimental parameters for adsorption, such as pH of a solution, contact time, initial copper concentration, adsorbent dosage, and temperature have been optimized. The most effective conditions for metal adsorption onto the ionic imprinted polymer were found to be a pH of 8.0, a temperature of 30 °C, a concentration of 0.03 g/100 mL, and a contact time of 50 min. Based on the ANOVA statistical value, the adsorption of Cu2+ ion on IIP is significant with very low probability (p) values (<0.001). The Langmuir isotherm model and a second-order reaction were both used in the adsorption process. According to thermodynamic characteristics, Cu2+ adsorption over IIPs and NIP was an endothermic, spontaneous process. Compared to NIP, the imprinted polymer exhibits a significantly better capacity and selectivity for Cu2+ adsorption, the maximum removal percentage of IIPs and NIP was 96.02 % and 74.3 % respectively. Moreover, the research showed that ion imprinting can be a promising technique for preparing selective adsorbents to separate and preconcentrate metal in a medium of multiple competitive metals (Co2+, Cd2+, Ni2+, Zn2+, Fe2+, and Pb2+) The most important point for this new Cu2+-IIPs was shown superior reusability up to 8 cycles with small decrees in uptake capability.
Collapse
Affiliation(s)
- Huda Y Sharef
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Aveen F Jalal
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Bnar M Ibrahim
- Department of Chemistry, College of Science, University of Raparin, Sulaymaneyah, Iraq.
| | - Nabil Fakhre
- Department of Chemistry, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Ibrahim N Qader
- Department of Physics, College of Science, University of Raparin, Sulaymaneyah, Iraq
| |
Collapse
|
8
|
Wang F, Hu X, Tang C, Liu C, Zhu Z. Phosphate-functionalized ramie stalk adsorbent for efficient removal of Zn 2+ from water: adsorption performance, mechanism, and fixed-bed column treatment of real wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6245-6261. [PMID: 35989403 DOI: 10.1007/s11356-022-22590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
A highly efficient adsorbent functionalized with phosphate groups made from a local agricultural waste, ramie stalk, was designed for Zn2+ removal from water. SEM, EDS, FTIR, zeta potential, and XPS tests were used to study the morphology and properties of modified ramie stalk (RS-P). The results showed that the phosphate groups were successfully grafted to the surface of the ramie stalk, which has a multilayered and porous structure and can provide large adsorption sites. Adsorption performance and mechanism were investigated in the static and dynamic adsorption experiments. The adsorption kinetics of Zn2+ by RS-P were better fitted by the pseudo-second-order model, indicating chemical adsorption. Adsorption isotherm was better described by Redlich-Peterson isotherm, which suggested heterogeneous and multi-site adsorption, with a maximum adsorption capacity of 0.558 mmol g-1. The characterization of adsorbents before and after adsorption indicated that a combined action of electrostatic interaction and ion exchange was the primary mechanism of adsorption. Dynamic adsorption experiments with fixed-bed column displayed excellent water treatment capabilities. RS-P exhibited good reusability in 5 cycles without much deterioration in its adsorption performances. Complex co-existing ions impaired Zn2+ adsorption during real wastewater treatment. This research benefits agricultural waste recycling and provides safe water to ensure economic, social, and environmental sustainability.
Collapse
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China.
| | - XiaoLi Hu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Cheng Tang
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Changlu Liu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Zhaoju Zhu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| |
Collapse
|
9
|
Easy and Low-Cost Method for Synthesis of Carbon–Silica Composite from Vinasse and Study of Ibuprofen Removal. Mol Vis 2022. [DOI: 10.3390/c8040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Vinasse was successfully utilized to synthesize carbon–silica composite with a low-cost silica source available in Thailand (sodium silicate, Na2SiO3) and most commonly used source, tetraethyl orthosilicate (TEOS). The composites were prepared by a simple one-step sol–gel process by varying the vinasse (as carbon source) to silica source (Na2SiO3 or TEOS) weight ratio. The resulting composites were characterized by N2 adsorption, moisture and ash contents, pH, pHpzc, bulk density, Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX). The composites had highest surface area of 313 and 456 m2/g, with average mesopore diameters of 5.00 and 2.62 nm when using Na2SiO3 and TEOS as the silica sources, respectively. The adsorption of a non-steroidal anti-inflammatory drug, ibuprofen, was investigated. The contact time to reach equilibrium was 60 min for both composites. The adsorption kinetics were fitted by a pseudo-second-order model with the correlation coefficient R2 > 0.997. The adsorption isotherms were well described by the Langmuir model (R2 > 0.992), which indicates monolayer adsorption. The maximal adsorption capacities of the Na2SiO3- and TEOS-based composites were as high as 406 and 418 mg/g at pH 2, respectively. The research results indicate that vinasse and a low-cost silica source (Na2SiO3) show great potential to synthesize adsorbents through a simple method with high efficiency.
Collapse
|
10
|
The Role of Conventional Methods and Artificial Intelligence in the Wastewater Treatment: A Comprehensive Review. Processes (Basel) 2022. [DOI: 10.3390/pr10091832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Water pollution is a severe health concern. Several studies have recently demonstrated the efficacy of various approaches for treating wastewater from anthropogenic activities. Wastewater treatment is an artificial procedure that removes contaminants and impurities from wastewater or sewage before discharging the effluent back into the environment. It can also be recycled by being further treated or polished to provide safe quality water for use, such as potable water. Municipal and industrial wastewater treatment systems are designed to create effluent discharged to the surrounding environments and must comply with various authorities’ environmental discharge quality rules. An effective, low-cost, environmentally friendly, and long-term wastewater treatment system is critical to protecting our unique and finite water supplies. Moreover, this paper discusses water pollution classification and the three traditional treatment methods of precipitation/encapsulation, adsorption, and membrane technologies, such as electrodialysis, nanofiltration, reverse osmosis, and other artificial intelligence technology. The treatment performances in terms of application and variables have been fully addressed. The ultimate purpose of wastewater treatment is to protect the environment that is compatible with public health and socioeconomic considerations. Realization of the nature of wastewater is the guiding concept for designing a practical and advanced treatment technology to assure the treated wastewater’s productivity, safety, and quality.
Collapse
|