1
|
Azam MNK, Biswas P, Khandker A, Tareq MMI, Tauhida SJ, Shishir TA, Bibi S, Alam MA, Zilani MNH, Albekairi NA, Alshammari A, Rahman MS, Hasan MN. Profiling of antioxidant properties and identification of potential analgesic inhibitory activities of Allophylus villosus and Mycetia sinensis employing in vivo, in vitro, and computational techniques. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118695. [PMID: 39142619 DOI: 10.1016/j.jep.2024.118695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional use of plants for medicinal purposes, called phytomedicine, has been known to provide relief from pain. In Bangladesh, the Chakma indigenous community has been using Allophylus villosus and Mycetia sinensis to treat various types of pain and inflammation. AIM OF THE STUDY The object of this research is to evaluate the effectiveness of these plants in relieving pain and their antioxidant properties using various approaches such as in vitro, in vivo, and computational techniques. Additionally, the investigation will also analyse the phytochemicals present in these plants. MATERIALS AND METHODS We conducted in vivo analgesic experiment on Swiss albino mice and in-silico inhibitory activities on COX-2 & 15-LOX-2 enzymes. Assessment of DPPH, Anti Radical Activities (ARA), FRAP, H2O2 Free Radical Scavenging, Reducing the power of both plants performed significant % inhibition with tolerable IC50. Qualitative screening of functional groups of phytochemicals was précised by FTIR and GC-MS analysis demonstrated phytochemical investigations. RESULTS The ethyl acetate (EtOAc) fractioned Mycetia sinensis extract as well as the ethanoic extract and all fractioned extracts of Allophylus villosus have reported a significant percentage (%) of writhing inhibition (p < 0.05) with the concentrated doses 250 mg as well as 500 mg among the Swiss albino mice for writhing observation of analgesic effect. In the silico observation, a molecular-docking investigation has performed according to GC-MS generated 43 phyto-compounds of both plants to screen their binding affinity by targeting COX-2 and 15-LOX-2 enzymes. Consequently, in order to assess and ascertain the effectiveness of the sorted phytocompounds, ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) investigation, DFT (Density-functional theory) by QM (Quantum mechanics), and MDS (Molecular dynamics simulation) were carried out. As the outcome, compounds like 5-(2,4-ditert-butylphenoxy)-5-oxopentanoic acid; 2,4-ditert-butylphenyl 5-hydroxypentanoate; 3,3-diphenyl-5-methyl-3H-pyrazole; 2-O-(6-methylheptan-2-yl) 1-O-octyl benzene-1,2-dicarboxylate and dioctan-3-yl benzene-1,2-dicarboxylate derived from the ethnic plant A. villosus and another ethnic plant M. sinensis extracts enchants magnificent analgesic inhibitions and performed more significant drug like activities with the targeted enzymes. CONCLUSIONS Phytocompounds from A. villosus & M. sinensis exhibited potential antagonist activity against human 15-lipoxygenase-2 and cyclooxygenase-2 proteins. The effective ester compounds from these plants performed more potential anti-nociceptive activity which could be used as a drug in future.
Collapse
Affiliation(s)
- Md Nur Kabidul Azam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; ABEx Bio-Research Center, East Azampur, Dhaka, 1230, Bangladesh
| | - Amia Khandker
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh; Biotechnology & Natural Medicine Division, TechB Nutrigenomics, Dhanmondi, Dhaka, 1209, Bangladesh
| | - Md Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Sadia Jannat Tauhida
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Tushar Ahmed Shishir
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka, 1212, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad, 41000, Pakistan
| | - Md Asraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Md Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| | - Norah A Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohammad Shahedur Rahman
- Bioresources Technology & Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
2
|
Ivanov SM, Rudik AV, Lagunin AA, Filimonov DA, Poroikov VV. DIGEP-Pred 2.0: A web application for predicting drug-induced cell signaling and gene expression changes. Mol Inform 2024; 43:e202400032. [PMID: 38979651 DOI: 10.1002/minf.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 06/14/2024] [Indexed: 07/10/2024]
Abstract
The analysis of drug-induced gene expression profiles (DIGEP) is widely used to estimate the potential therapeutic and adverse drug effects as well as the molecular mechanisms of drug action. However, the corresponding experimental data is absent for many existing drugs and drug-like compounds. To solve this problem, we created the DIGEP-Pred 2.0 web application, which allows predicting DIGEP and potential drug targets by structural formula of drug-like compounds. It is based on the combined use of structure-activity relationships (SARs) and network analysis. SAR models were created using PASS (Prediction of Activity Spectra for Substances) technology for data from the Comparative Toxicogenomics Database (CTD), the Connectivity Map (CMap) for the prediction of DIGEP, and PubChem and ChEMBL for the prediction of molecular mechanisms of action (MoA). Using only the structural formula of a compound, the user can obtain information on potential gene expression changes in several cell lines and drug targets, which are potential master regulators responsible for the observed DIGEP. The mean accuracy of prediction calculated by leave-one-out cross validation was 86.5 % for 13377 genes and 94.8 % for 2932 proteins (CTD data), and it was 97.9 % for 2170 MoAs. SAR models (mean accuracy-87.5 %) were also created for CMap data given on MCF7, PC3, and HL60 cell lines with different threshold values for the logarithm of fold changes: 0.5, 0.7, 1, 1.5, and 2. Additionally, the data on pathways (KEGG, Reactome), biological processes of Gene Ontology, and diseases (DisGeNet) enriched by the predicted genes, together with the estimation of target-master regulators based on OmniPath data, is also provided. DIGEP-Pred 2.0 web application is freely available at https://www.way2drug.com/digep-pred.
Collapse
Affiliation(s)
- Sergey M Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow, 117997, Russia
| | - Anastasia V Rudik
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
| | - Alexey A Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow, 117997, Russia
| | - Dmitry A Filimonov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
| | - Vladimir V Poroikov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow, 119121, Russia
| |
Collapse
|
3
|
Jojić AA, Liga S, Uţu D, Ruse G, Suciu L, Motoc A, Şoica CM, Tchiakpe-Antal DS. Beyond Essential Oils: Diterpenes, Lignans, and Biflavonoids from Juniperus communis L. as a Source of Multi-Target Lead Compounds. PLANTS (BASEL, SWITZERLAND) 2024; 13:3233. [PMID: 39599442 PMCID: PMC11598787 DOI: 10.3390/plants13223233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/13/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Common Juniper (Juniperus communis L.) is a gymnosperm that stands out through its fleshy, spherical female cones, often termed simply "berries". The cone berries and various vegetative parts (leaves, twigs and even roots) are used in traditional phytotherapy, based on the beneficial effects exerted by a variety of secondary metabolites. While the volatile compounds of Juniperus communis are known for their aromatic properties and have been well-researched for their antimicrobial effects, this review shifts focus to non-volatile secondary metabolites-specifically diterpenes, lignans, and biflavonoids. These compounds are of significant biomedical interest due to their notable pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. The aim of this review is to offer an up-to-date account of chemical composition of Juniperus communis and related species, with a primary emphasis on the bioactivities of diterpenes, lignans, and biflavonoids. By examining recent preclinical and clinical data, this work assesses the therapeutic potential of these metabolites and their mechanisms of action, underscoring their value in developing new therapeutic options. Additionally, this review addresses the pharmacological efficacy and possible therapeutic applications of Juniperus communis in treating various human diseases, thus supporting its potential role in evidence-based phytotherapy.
Collapse
Affiliation(s)
- Alina Arabela Jojić
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Sergio Liga
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Chemical Engineering, Biotechnologies and Environmental Protection, Politehnica University Timisoara, 6 Vasile Parvan, 300223 Timisoara, Romania
| | - Diana Uţu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
| | - Graţiana Ruse
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Liana Suciu
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
| | - Andrei Motoc
- Department of Anatomy-Embryology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Codruța Marinela Şoica
- Department of Pharmacology-Pharmacotherapy, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania; (A.A.J.); (S.L.); (L.S.); (C.M.Ş.)
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| | - Diana-Simona Tchiakpe-Antal
- Research Center for Pharmacotoxicologic Evaluations (FARMTOX), “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2nd Eftimie Murgu Square, 300041 Timisoara, Romania;
| |
Collapse
|
4
|
Imam MA, Alandijany TA, Felemban HR, Attar RM, Faizo AA, Gattan HS, Dwivedi VD, Azhar EI. Machine learning, network pharmacology, and molecular dynamics reveal potent cyclopeptide inhibitors against dengue virus proteins. Mol Divers 2024:10.1007/s11030-024-10975-w. [PMID: 39227512 DOI: 10.1007/s11030-024-10975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
The dengue virus is a major global health hazard responsible for an estimated 390 million diseases yearly. This study focused on identifying cyclopeptide inhibitors for envelope structural proteins E, NS1, NS3, and NS5. Additionally, 5579 cyclopeptides were individually screened against the four target proteins using a machine learning-based quantitative structure-activity relationship model. Subsequently, the best 10 cyclopeptides from each protein were selected for molecular docking with their corresponding proteins. Moreover, the protein-peptide complexes with the highest affinity were subjected to a 100-ns molecular dynamics simulation. The protein-protein complexes exhibited superior structural stability and binding interactions. Based on the results of the MD simulation analyses, which included checking values for Root Mean Square Deviation, Root Mean Square Fluctuation, Principal Component Analysis (PCA), free energy landscapes, and energetic components, it was found that NS5-CP03714 complex is more stable and has stronger binding interactions than NS3-CP02054. PCA and free energy landscape plots have confirmed the higher conformational stability of NS5-CP03714. Analysis of the energetic components revealed that NS5-CP03714 (total binding energy = - 47.19 kcal/mol) exhibits more favorable interaction energies and overall binding energy compared to NS3-CP02054 (total binding energy = - 27.36 kcal/mol), suggesting a stronger and more stable formation of the complex. In addition, the drug-target network of two specific peptides (CP02950 and CP05582) and their associated target proteins were analyzed. This analysis revealed valuable information about their ability to target several proteins and their potential for broad-spectrum activity. Additional experimental investigations are necessary to validate these computational results and assess the efficacy of identified peptide inhibitors in biological systems.
Collapse
Affiliation(s)
- Mohammed A Imam
- Department of Medical Microbiology and Parasitology, Qunfudah Faculty of Medicine, Umm Al-Qura University, Al-Qunfudah, 21961, Saudi Arabia
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Thamir A Alandijany
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Hashim R Felemban
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Roba M Attar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Biological Sciences/Microbiology, Faculty of Science, University of Jeddah, , 21959, Jeddah, Saudi Arabia
| | - Arwa A Faizo
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Hattan S Gattan
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia
| | - Vivek Dhar Dwivedi
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Bioinformatics Research Division, Quanta Calculus, Greater Noida, India.
| | - Esam I Azhar
- Special Infectious Agents Unit-BSL3, King Fahd Medical Research Center, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, 21362, Jeddah, Saudi Arabia.
| |
Collapse
|
5
|
Khan DA, Adhikary T, Sultana MT, Toukir IA. A comprehensive identification of potential molecular targets and small drugs candidate for melanoma cancer using bioinformatics and network-based screening approach. J Biomol Struct Dyn 2024; 42:7349-7369. [PMID: 37534476 DOI: 10.1080/07391102.2023.2240409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Melanoma is the third most common malignant skin tumor and has increased in morbidity and mortality over the previous decade due to its rapid spread into the bloodstream or lymphatic system. This study used integrated bioinformatics and network-based methodologies to reliably identify molecular targets and small molecular medicines that may be more successful for Melanoma diagnosis, prognosis and treatment. The statistical LIMMA approach utilized for bioinformatics analysis in this study found 246 common differentially expressed genes (cDEGs) between case and control samples from two microarray gene-expression datasets (GSE130244 and GSE15605). Protein-protein interaction network study revealed 15 cDEGs (PTK2, STAT1, PNO1, CXCR4, WASL, FN1, RUNX2, SOCS3, ITGA4, GNG2, CDK6, BRAF, AGO2, GTF2H1 and AR) to be critical in the development of melanoma (KGs). According to regulatory network analysis, the most important transcriptional and post-transcriptional regulators of DEGs and hub-DEGs are ten transcription factors and three miRNAs. We discovered the pathogenetic mechanisms of MC by studying DEGs' biological processes, molecular function, cellular components and KEGG pathways. We used molecular docking and dynamics modeling to select the four most expressed genes responsible for melanoma malignancy to identify therapeutic candidates. Then, utilizing the Connectivity Map (CMap) database, we analyzed the top 4-hub-DEGs-guided repurposable drugs. We validated four melanoma cancer drugs (Fisetin, Epicatechin Gallate, 1237586-97-8 and PF 431396) using molecular dynamics simulation with their target proteins. As a result, the results of this study may provide resources to researchers and medical professionals for the wet-lab validation of MC diagnosis, prognosis and treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhrubo Ahmed Khan
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Tonmoy Adhikary
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mst Tania Sultana
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Imran Ahamed Toukir
- Department of Chemical Engineering, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
6
|
Barman AK, Mahadi S, Hossain MA, Begum R, Acharyya RN, Alam M, Rahman MH, Biswas NN, Hossain ASMMA. Assessing anti oxidant, antidiabetic potential and GCMS profiling of ethanolic root bark extract of Zanthoxylum rhetsa (Roxb.) DC: Supported by in vitro, in vivo and in silico molecular modeling. PLoS One 2024; 19:e0304521. [PMID: 39159188 PMCID: PMC11332921 DOI: 10.1371/journal.pone.0304521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/14/2024] [Indexed: 08/21/2024] Open
Abstract
Zanthoxylum rhetsa (ZR) is used traditionally to manage a variety of ailments, including diabetes. Oxidative stress may accelerate the diabetic condition. The available antidiabetic and antioxidant drugs have many shortcomings including resistance, inefficiency, higher dose, side effects and costs. The goal of the current investigation was to assess the antioxidant capacity and antidiabetic activity of an ethanolic extract of Zanthoxylum rhetsa root bark (ZRRB) through in vitro, in vivo, and in silico methods. The antioxidant capacity of the ZRRB extract was measured using both the DPPH radical assay and the total antioxidant activity test. The oral glucose tolerance test (OGTT) and alloxan-induced diabetic mice model were also used to examine in vivo antidiabetic efficacy. Phytochemicals identification was done by GCMS analysis. Additionally, computational methods such as molecular docking, ADMET analysis, and molecular dynamics (MD) modeling were performed to determine the above pharmacological effects. The extract demonstrated significant DPPH scavenging activity (IC50 = 42.65 μg/mL). In the OGTT test and alloxan-induced diabetes mice model, the extract effectively lowered blood glucose levels. Furthermore, in vitro inhibition of pancreatic α-amylase studies demonstrated the ZRRB extract as a good antidiabetic crude drug (IC50 = 81.45 μg/mL). GCMS investigation confirmed that the crude extract contains 16 major phytoconstituents, which were docked with human peroxiredoxin-5, α-amylase, and sulfonylurea receptor 1. Docking and pharmacokinetic studies demonstrated that among 16 phytoconstituents, 6H-indolo[3,2,1-de] [1,5]naphthyridin-6-one (CID: 97176) showed the highest binding affinity to targeted enzymes, and imitated Lipinski's rule of five. Furthermore, MD simulation data confirmed that the aforementioned compound is very steady to the binding site of α-amylase and sulfonylurea receptor 1 receptors. Findings from in vitro, in vivo and in silico investigation suggest that ZRRB extract contains a lead compound that could be a potent source of antidiabetic drug candidate.
Collapse
Affiliation(s)
| | - Sumaiya Mahadi
- Department of Pharmacy, R. P. Shaha University, Naryanganj, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Bangladesh
| | - Rahima Begum
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Marjana Alam
- Department of Pharmacy, R. P. Shaha University, Naryanganj, Bangladesh
| | - Md. Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, Bangladesh
| | | | | |
Collapse
|
7
|
Dutta A, Hossain MA, Somadder PD, Moli MA, Ahmed K, Rahman MM, Bui FM. Exploring the therapeutic targets of stevioside in management of type 2 diabetes by network pharmacology and in-silico approach. Diabetes Metab Syndr 2024; 18:103111. [PMID: 39217825 DOI: 10.1016/j.dsx.2024.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/17/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
AIMS The main objective of the current study is to investigate the pathways and therapeutic targets linked to stevioside in the management of T2D using computational approaches. METHODS We collected RNA-seq datasets from NCBI, then employed GREIN to retrieve differentially expressed genes (DEGs). Computer-assisted techniques DAVID, STRING and NetworkAnalyst were used to explore common significant pathways and therapeutic targets associated with T2D and stevioside. Molecular docking and dynamics simulations were conducted to validate the interaction between stevioside and therapeutic targets. RESULTS Gene ontology and KEGG analysis revealed that prostaglandin synthesis, IL-17 signaling, inflammatory response, and interleukin signaling were potential pathways targeted by stevioside in T2D. Protein-protein interactions (PPI) analysis identified six common hub proteins (PPARG, PTGS2, CXCL8, CCL2, PTPRC, and EDN1). Molecular docking results showed best binding of stevioside to PPARG (-8 kcal/mol) and PTGS2 (-10.1 kcal/mol). Finally, 100 ns molecular dynamics demonstrated that the binding stability between stevioside and target protein (PPARG and PTGS2) falls within the acceptable range. CONCLUSIONS This study reveals that stevioside exhibits significant potential in controlling T2D by targeting key pathways and stably binding to PPARG and PTGS2. Further research is necessary to confirm and expand upon these significant computational results.
Collapse
Affiliation(s)
- Amit Dutta
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Banani, Dhaka, 1213, Bangladesh
| | - Pratul Dipta Somadder
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - Mahmuda Akter Moli
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Bangladesh
| | - Kawsar Ahmed
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University (MBSTU), Santosh, Tangail, 1902, Bangladesh; Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada; Health Informatics Research Lab, Department of Computer Science and Engineering, Daffodil International University, Daffodil Smart City (DSC), Birulia, Savar, Dhaka, 1216, Bangladesh.
| | - Md Masuder Rahman
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh.
| | - Francis M Bui
- Department of Electrical and Computer Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, S7N 5A9, Canada
| |
Collapse
|
8
|
Islam MA, Hossain MS, Hasnat S, Shuvo MH, Akter S, Maria MA, Tahcin A, Hossain MA, Hoque MN. In-silico study unveils potential phytocompounds in Andrographis paniculata against E6 protein of the high-risk HPV-16 subtype for cervical cancer therapy. Sci Rep 2024; 14:17182. [PMID: 39060289 PMCID: PMC11282209 DOI: 10.1038/s41598-024-65112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Despite therapeutic advancements, cervical cancer caused by high-risk subtypes of the human papillomavirus (HPV) remains a leading cause of cancer-related deaths among women worldwide. This study aimed to discover potential drug candidates from the Asian medicinal plant Andrographis paniculata, demonstrating efficacy against the E6 protein of high-risk HPV-16 subtype through an in-silico computational approach. The 3D structures of 32 compounds (selected from 42) derived from A. paniculata, exhibiting higher binding affinity, were obtained from the PubChem database. These structures underwent subsequent analysis and screening based on criteria including binding energy, molecular docking, drug likeness and toxicity prediction using computational techniques. Considering the spectrometry, pharmacokinetic properties, docking results, drug likeliness, and toxicological effects, five compounds-stigmasterol, 1H-Indole-3-carboxylic acid, 5-methoxy-, methyl ester (AP7), andrographolide, apigenin and wogonin-were selected as the potential inhibitors against the E6 protein of HPV-16. We also performed 200 ns molecular dynamics simulations of the compounds to analyze their stability and interactions as protein-ligand complexes using imiquimod (CID-57469) as a control. Screened compounds showed favorable characteristics, including stable root mean square deviation values, minimal root mean square fluctuations and consistent radius of gyration values. Intermolecular interactions, such as hydrogen bonds and hydrophobic contacts, were sustained throughout the simulations. The compounds displayed potential affinity, as indicated by negative binding free energy values. Overall, findings of this study suggest that the selected compounds have the potential to act as inhibitors against the E6 protein of HPV-16, offering promising prospects for the treatment and management of CC.
Collapse
Affiliation(s)
- Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, 2310, Bangladesh.
| | - Md Shohel Hossain
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Soharth Hasnat
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Mahmudul Hasan Shuvo
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Shilpy Akter
- Department of Pharmacy, Comilla University, Shalmanpur, Bangladesh
| | - Mustary Anjum Maria
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Anika Tahcin
- Department of Biochemistry and Molecular Biology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Md Arju Hossain
- Department of Microbiology, Primeasia University, Dhaka, 1213, Bangladesh
| | - M Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
9
|
Evidente A. The incredible story of ophiobolin A and sphaeropsidin A: two fungal terpenes from wilt-inducing phytotoxins to promising anticancer compounds. Nat Prod Rep 2024; 41:434-468. [PMID: 38131643 DOI: 10.1039/d3np00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Covering: 2000 to 2023This review presents the exceptional story of ophiobolin A (OphA) and sphaeropsidin A (SphA), a sesterterpene and a diterpene, respectively, which were initially isolated as fungal phytotoxins and subsequently shown to possess other interesting biological activities, including promising anticancer activities. Ophiobolin A is a phytotoxin produced by different fungal pathogens, all belonging to the Bipolaris genus. Initially, it was only known as a very dangerous phytotoxin produced by fungi attacking essential cereals, such as rice and barley. However, extensive and interesting studies were carried out to define its original carbon skeleton, which is characterized by a typical 5 : 8 : 5 ring system and shared with fusicoccins and cotylenins, and its phytotoxic activity on host and non-host plants. The biosynthesis of OphA was also defined by describing the different steps starting from mevalonate and through the rearrangement of the acyclic C-25 precursor lead the toxin is obtained. OphA was also produced as a bioherbicide from Drechslera gigantea and proposed for the biocontrol of the widespread and dangerous weed Digitaria sanguinaria. To date, more than sixty ophiobolins have been isolated from different fungi and their biological activities and structure-activity relationship investigated, which were also described using their hemisynthetic derivatives. In the last two decades, thorough studies have been performed on the potential anticancer activity of OphA and its original mode of action, attracting great interest from scientists. Sphaeropsidin A has a similar story. It was isolated as the main phytotoxin from Diplodia cupressi, the causal agent of Italian cypress canker disease, resulting in the loss of millions of plants in a few years in the Mediterranean basin. The damage to the forest, environment and ornamental heritage are noteworthy and economic losses are also suffered by tree nurseries and the wood industry. Six natural analogues of SphA were isolated and several interesting hemisynthetic derivatives were prepared to study its structure-activity relationship. Surprisingly, sphaeropsidin A showed other interesting biological activities, including antibiotic, antifungal, and antiviral. In the last decade, extensive studies have focused on the anticancer activity and original mode of action of SphA. Furthermore, specific hemisynthetic studies enable the preparation of derivatives of SphA, preserving its chromophore, which showed a noteworthy increase in anticancer activity. It has been demonstrated that ophiobolin A and sphaeropsidin A are promising natural products showing potent activity against some malignant cancers, such as brain glioblastoma and different melanomas.
Collapse
Affiliation(s)
- Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125 Bari, Italy.
| |
Collapse
|
10
|
Nur Kabidul Azam M, Biswas P, Mohaimenul Islam Tareq M, Ridoy Hossain M, Bibi S, Anisul Hoque M, khandker A, Ashraful Alam M, Nazmul Hasan Zilani M, Shahedur Rahman M, Albekairi NA, Alshammari A, Nazmul Hasan M. Identification of antidiabetic inhibitors from Allophylus villosus and Mycetia sinensis by targeting α-glucosidase and PPAR-γ: In-vitro, in-vivo, and computational evidence. Saudi Pharm J 2024; 32:101884. [PMID: 38090733 PMCID: PMC10711519 DOI: 10.1016/j.jsps.2023.101884] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder arising from insulin deficiency and defectiveness of the insulin receptor functioning on transcription factor where the body loses control to regulate glucose metabolism in β-cells, pancreatic and liver tissues to homeostat glucose level. Mainstream medicines used for DM are incapable of restoring normal glucose homeostasis and have side effects where medicinal plant-derived medicine administrations have been claimed to cure diabetes or at least alleviate the significant symptoms and progression of the disease by the traditional practitioners. This study focused on screening phytocompounds and their pharmacological effects on anti-hyperglycemia on Swiss Albino mice of n-hexane, ethyl acetate, and ethanol extract of both plants Mycetia sinensis and Allophylus villosus as well as the in-silico investigations. Qualitative screening of phytochemicals and total phenolic and flavonoid content estimation were performed significantly in vitro analysis. FTIR and GC-MS analysis précised the functional groups and phytochemical investigations where FTIR scanned 14, 23 & 17 peaks in n-hexane, ethyl acetate, and ethanol extracts of Mycetia sinensis whereas the n-hexane, ethyl acetate, and ethanol extracts of Allophylus villosus scanned 11 peaks, 18 peaks, and 29 peaks, respectively. In GC-MS, 24 chemicals were identified in Mycetia sinensis extracts, whereas 19 were identified in Allophylus villosus extracts. Moreover, both plants' ethyl acetate and ethanol fractioned extracts were reported significantly (p < 0.05) with concentrations of 250 mg and 500 mg on mice for oral glucose tolerance test, serum creatinine test and serum alkaline phosphatase test. In In silico study, a molecular docking study was done on these 43 phytocompounds identified from Mycetia sinensis and Allophylus villosus to identify their binding affinity to the target Alpha Glucosidase (AG) and Peroxisome proliferator-activated receptor gamma protein (PPARG). Therefore, ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis, quantum mechanics-based DFT (density-functional theory), and molecular dynamics simulation were done to assess the effectiveness of the selected phytocompounds. According to the results, phytocompounds such as 2,4-Dit-butyl phenyl 5-hydroxypentanoate and Diazo acetic acid (1S,2S,5R)-2-isopropyl-5-methylcyclohexyl obtained from Mycetia sinensis and Allophylus villosus extract possess excellent antidiabetic activities.
Collapse
Affiliation(s)
- Md Nur Kabidul Azam
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Md. Mohaimenul Islam Tareq
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ridoy Hossain
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Md. Anisul Hoque
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Amia khandker
- Biotechnology division, TechB Nutrigenomics, Dhanmondi, Dhaka 1209, Bangladesh
| | - Md Ashraful Alam
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mohammad Shahedur Rahman
- Bioresources Technology & Industrial Biotechnology Laboratory, Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh, 11451, Saudi Arabia
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
11
|
Putri GN, Gudla CS, Singh M, Ng CH, Idris FFH, Oo Y, Tan JHY, Wong JFJ, Chu JJH, Selvam V, Selvaraj SS, Shandil RK, Narayanan S, Alonso S. Expanding the anti-flaviviral arsenal: Discovery of a baicalein-derived Compound with potent activity against DENV and ZIKV. Antiviral Res 2023; 220:105739. [PMID: 37944824 DOI: 10.1016/j.antiviral.2023.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
With approximately 3.8 billion people at risk of infection in tropical and sub-tropical regions, Dengue ranks among the top ten threats worldwide. Despite the potential for severe disease manifestation and the economic burden it places on endemic countries, there is a lack of approved antiviral agents to effectively treat the infection. Flavonoids, including baicalein, have garnered attention for their antimicrobial properties. In this study, we took a rational and iterative approach to develop a series of baicalein derivatives with improved antiviral activity against Dengue virus (DENV). Compound 11064 emerged as a promising lead candidate, exhibiting antiviral activity against the four DENV serotypes and representative strains of Zika virus (ZIKV) in vitro, with attractive selectivity indices. Mechanistic studies revealed that Compound 11064 did not prevent DENV attachment at the cell surface, nor viral RNA synthesis and viral protein translation. Instead, the drug was found to impair the post-receptor binding entry steps (endocytosis and/or uncoating), as well as the late stage of DENV infection cycle, including virus assembly/maturation and/or exocytosis. The inability to raise DENV resistant mutants, combined with significant antiviral activity against an unrelated RNA virus (Enterovirus-A71) suggested that Compound 11064 targets the host rather than a viral protein, further supporting its broad-spectrum antiviral potential. Overall, Compound 11064 represents a promising antiviral candidate for the treatment of Dengue and Zika.
Collapse
Affiliation(s)
- Geraldine Nadya Putri
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | | | - Mayas Singh
- Foundation for Neglected Disease Research, Bangalore, Karnataka, India
| | - Chin Huan Ng
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Fakhriedzwan Fitri Haji Idris
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Yukei Oo
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Jasmine Hwee Yee Tan
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Joel Feng Jie Wong
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Justin Jang Hann Chu
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore
| | - Vignesh Selvam
- Foundation for Neglected Disease Research, Bangalore, Karnataka, India
| | | | | | | | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School, National University of Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
12
|
Sharif MA, Khan AM, Salekeen R, Rahman MH, Mahmud S, Bibi S, Biswas P, Nazmul Hasan M, Islam KMD, Rahman SM, Islam ME, Alshammari A, Alharbi M, Hayee A. Phyllanthus emblica (Amla) methanolic extract regulates multiple checkpoints in 15-lipoxygenase mediated inflammopathies: Computational simulation and in vitro evidence. Saudi Pharm J 2023; 31:101681. [PMID: 37576860 PMCID: PMC10415228 DOI: 10.1016/j.jsps.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
Amla (Phyllanthus emblica) has long been used in traditional folk medicine to prevent and cure a variety of inflammatory diseases. In this study, the antioxidant activity (DPPH scavenging and reducing power), anti-inflammatory activity (RBC Membrane Stabilization and 15-LOX inhibition), and anticoagulation activity (Serin protease inhibition and Prothrombin Time assays) of the methanolic extract of amla were conducted. Amla exhibited a substantial amount of phenolic content (TPC: 663.53 mg GAE/g) and flavonoid content (TFC: 418.89 mg GAE/g). A strong DPPH scavenging effect was observed with an IC50 of 311.31 µg/ml as compared to standard ascorbic acid with an IC50 of 130.53 µg/ml. In reducing power assay, the EC50 value of the extract was found to be 196.20 µg/ml compared to standard ascorbic acid (EC50 = 33.83 µg/ml). The IC50 value of the RBC membrane stabilization and 15-LOX assays was observed as 101.08 µg/ml (IC50 of 58.62 µg/ml for standard aspirin) and 195.98 µg/ml (IC50 of 19.62 µg/ml for standard quercetin), respectively. The extract also strongly inhibited serine protease (trypsin) activity with an IC50 of 505.81 µg/ml (IC50 of 295.44 µg/ml for standard quercetin). The blood coagulation time (PTT) was found to be 11.91 min for amla extract and 24.11 min for standard Warfarin. Thus, the findings of an in vitro study revealed that the methanolic extract of amla contains significant antioxidant, anti-inflammatory, and anticoagulation activity. Furthermore, in silico docking and simulation of reported phytochemicals of amla with human 15-LOXA and 15-LOXB were carried out to validate the anti-inflammatory activity of amla. In this analysis, epicatechin and catechin showed greater molecular interaction and were considerably stable throughout the 100 ns simulation with 15-lipoxygenase A (15-LOXA) and 15-lipoxygenase B (15-LOXB) respectively.
Collapse
Affiliation(s)
- Md. Arman Sharif
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Arman Mahmud Khan
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Rahagir Salekeen
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Hafijur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Sakib Mahmud
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Partha Biswas
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Kazi Mohammed Didarul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - S.M. Mahbubur Rahman
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Emdadul Islam
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdul Hayee
- Department of Immunology, Faculty of Medicine, Academic Assembly, University of Toyama, Toyama, Japan
| |
Collapse
|
13
|
Biswas P, Bibi S, Yousafi Q, Mehmood A, Saleem S, Ihsan A, Dey D, Hasan Zilani MN, Hasan MN, Saleem R, Awaji AA, Fahmy UA, Abdel-Daim MM. Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway: A Computational Drug Development Approach. Molecules 2023; 28:2977. [PMID: 37049742 PMCID: PMC10095937 DOI: 10.3390/molecules28072977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein-protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein-ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target's active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes.
Collapse
Affiliation(s)
- Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
| | - Shabana Bibi
- Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China
| | - Qudsia Yousafi
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Asim Mehmood
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Shahzad Saleem
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Awais Ihsan
- Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
| | - Dipta Dey
- Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
| | - Md. Nazmul Hasan Zilani
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Nazmul Hasan
- Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Rasha Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Al Bahah 65431, Saudi Arabia
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
14
|
Molecular Dynamics Simulation and Pharmacoinformatic Integrated Analysis of Bioactive Phytochemicals from Azadirachta indica (Neem) to Treat Diabetes Mellitus. J CHEM-NY 2023. [DOI: 10.1155/2023/4170703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Diabetes mellitus is a chronic hormonal and metabolic disorder in which our body cannot generate necessary insulin or does not act in response to it, accordingly, ensuing in discordantly high blood sugar (glucose) levels. Diabetes mellitus can lead to systemic dysfunction in the multiorgan system, including cardiac dysfunction, severe kidney disease, lowered quality of life, and increased mortality risk from diabetic complications. To uncover possible therapeutic targets to treat diabetes mellitus, the in silico drug design technique is widely used, which connects the ligand molecules with target proteins to construct a protein-ligand network. To identify new therapeutic targets for type 2 diabetes mellitus, Azadirachta indica is subjected to phytochemical screening using in silico molecular docking, pharmacokinetic behavior analysis, and simulation-based molecular dynamic analysis. This study has analyzed around 63 phytochemical compounds, and the initial selection of the compounds was made by analyzing their pharmacokinetic properties by comparing them with Lipinski’s rule of 5. The selected compounds were subjected to molecular docking. The top four ligand compounds were reported along with the control drug nateglinide based on their highest negative molecular binding affinity. The protein-ligand interaction of selected compounds has been analyzed to understand better how compounds interact with the targeted protein structure. The results of the in silico analysis revealed that 7-Deacetyl-7-oxogedunin had the highest negative docking score of −8.9 Kcal/mol and also demonstrated standard stability in a 100 ns molecular dynamic simulation performed with insulin receptor ectodomain. It has been found that these substances may rank among the essential supplementary antidiabetic drugs for treating type 2 diabetes mellitus. It is suggested that more in vivo and in vitro research studies be carried out to support the conclusions drawn from this in silico research strategy.
Collapse
|
15
|
Nature-Derived Compounds as Potential Bioactive Leads against CDK9-Induced Cancer: Computational and Network Pharmacology Approaches. Processes (Basel) 2022. [DOI: 10.3390/pr10122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Given the importance of cyclin-dependent kinases (CDKs) in the maintenance of cell development, gene transcription, and other essential biological operations, CDK blockers have been generated to manage a variety of disorders resulting from CDK irregularities. Furthermore, CDK9 has a crucial role in transcription by regulating short-lived anti-apoptotic genes necessary for cancer cell persistence. Addressing CDK9 with blockers has consequently emerged as a promising treatment for cancer. This study scrutinizes the effectiveness of nature-derived compounds (geniposidic acid, quercetin, geniposide, curcumin, and withanolide C) against CDK9 through computational approaches. A molecular docking study was performed after preparing the protein and the ligands. The selected blockers of the CDK9 exerted reliable binding affinities (−8.114 kcal/mol to −13.908 kcal/mol) against the selected protein, resulting in promising candidates compared to the co-crystallized ligand (LCI). The binding affinity of geniposidic acid (−13.908 kcal/mol) to CDK9 is higher than quercetin (−10.775 kcal/mol), geniposide (−9.969 kcal/mol), curcumin (−9.898 kcal/mol), withanolide C (−8.114 kcal/mol), and the co-crystallized ligand LCI (−11.425 kcal/mol). Therefore, geniposidic acid is a promising inhibitor of CDK9. Moreover, the molecular dynamics studies assessed the structure–function relationships and protein–ligand interactions. The network pharmacology study for the selected ligands demonstrated the auspicious compound–target–pathway signaling pathways vital in developing tumor, tumor cell growth, differentiation, and promoting tumor cell progression. Moreover, this study concluded by analyzing the computational approaches the natural-derived compounds that have potential interacting activities against CDK9 and, therefore, can be considered promising candidates for CKD9-induced cancer. To substantiate this study’s outcomes, in vivo research is recommended.
Collapse
|
16
|
A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci 2022; 23:ijms231911746. [PMID: 36233051 PMCID: PMC9569933 DOI: 10.3390/ijms231911746] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) induce carcinogenesis by causing genetic mutations, activating oncogenes, and increasing oxidative stress, all of which affect cell proliferation, survival, and apoptosis. When compared to normal cells, cancer cells have higher levels of ROS, and they are responsible for the maintenance of the cancer phenotype; this unique feature in cancer cells may, therefore, be exploited for targeted therapy. Quercetin (QC), a plant-derived bioflavonoid, is known for its ROS scavenging properties and was recently discovered to have various antitumor properties in a variety of solid tumors. Adaptive stress responses may be induced by persistent ROS stress, allowing cancer cells to survive with high levels of ROS while maintaining cellular viability. However, large amounts of ROS make cancer cells extremely susceptible to quercetin, one of the most available dietary flavonoids. Because of the molecular and metabolic distinctions between malignant and normal cells, targeting ROS metabolism might help overcome medication resistance and achieve therapeutic selectivity while having little or no effect on normal cells. The powerful bioactivity and modulatory role of quercetin has prompted extensive research into the chemical, which has identified a number of pathways that potentially work together to prevent cancer, alongside, QC has a great number of evidences to use as a therapeutic agent in cancer stem cells. This current study has broadly demonstrated the function-mechanistic relationship of quercetin and how it regulates ROS generation to kill cancer and cancer stem cells. Here, we have revealed the regulation and production of ROS in normal cells and cancer cells with a certain signaling mechanism. We demonstrated the specific molecular mechanisms of quercetin including MAPK/ERK1/2, p53, JAK/STAT and TRAIL, AMPKα1/ASK1/p38, RAGE/PI3K/AKT/mTOR axis, HMGB1 and NF-κB, Nrf2-induced signaling pathways and certain cell cycle arrest in cancer cell death, and how they regulate the specific cancer signaling pathways as long-searched cancer therapeutics.
Collapse
|
17
|
Dey D, Biswas P, Paul P, Mahmud S, Ema TI, Khan AA, Ahmed SZ, Hasan MM, Saikat ASM, Fatema B, Bibi S, Rahman MA, Kim B. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol Divers 2022:10.1007/s11030-022-10491-9. [PMID: 35821161 DOI: 10.1007/s11030-022-10491-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/24/2022] [Indexed: 12/15/2022]
Abstract
Hepatitis C virus (HCV) infection is a major public health concern, and almost two million people are infected per year globally. This is occurred by the diverse spectrum of viral genotypes, which are directly associated with chronic liver disease (fibrosis, and cirrhosis). Indeed, the viral genome encodes three principal proteins as sequentially core, E1, and E2. Both E1 and E2 proteins play a crucial role in the attachment of the host system, but E2 plays a more fundamental role in attachment. The researchers have found the "E2-CD81 complex" at the entry site, and therefore, CD81 is the key receptor for HCV entrance in both humans, and chimpanzees. So, the researchers are trying to block the host CD81 receptor and halt the virus entry within the cellular system via plant-derived compounds. Perhaps that is why the current research protocol is designed to perform an in silico analysis of the flavonoid compounds for targeting the tetraspanin CD81 receptor of hepatocytes. To find out the best flavonoid compounds from our library, web-based tools (Swiss ADME, pKCSM), as well as computerized tools like the PyRx, PyMOL, BIOVIA Discovery Studio Visualizer, Ligplot+ V2.2, and YASARA were employed. For molecular docking studies, the flavonoid compounds docked with the targeted CD81 protein, and herein, the best-outperformed compounds are Taxifolin, Myricetin, Puerarin, Quercetin, and (-)-Epicatechin, and outstanding binding affinities are sequentially - 7.5, - 7.9, - 8.2, - 8.4, and - 8.5 kcal/mol, respectively. These compounds have possessed more interactions with the targeted protein. To validate the post docking data, we analyzed both 100 ns molecular dynamic simulation, and MM-PBSA via the YASARA simulator, and finally finds the more significant outcomes. It is concluded that in the future, these compounds may become one of the most important alternative antiviral agents in the fight against HCV infection. It is suggested that further in vivo, and in vitro research studies should be done to support the conclusions of this in silico research workflow.
Collapse
Affiliation(s)
- Dipta Dey
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, 7408, Bangladesh.
| | - Priyanka Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, 6204, Bangladesh
| | - Tanzila Ismail Ema
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Arysha Alif Khan
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Shahlaa Zernaz Ahmed
- Department of Biochemistry and Microbiology, North South University, Dhaka, 1229, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Babry Fatema
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
18
|
Chemical Diversity and Potential Target Network of Woody Peony Flower Essential Oil from Eleven Representative Cultivars ( Paeonia × suffruticosa Andr.). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092829. [PMID: 35566179 PMCID: PMC9102020 DOI: 10.3390/molecules27092829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
Woody peony (Paeonia × suffruticosa Andr.) has many cultivars with genetic variances. The flower essential oil is valued in cosmetics and fragrances. This study was to investigate the chemical diversity of essential oils of eleven representative cultivars and their potential target network. Hydro-distillation afforded yields of 0.11–0.25%. Essential oils were analyzed by GC-MS and GC-FID which identified 105 compounds. Three clusters emerged from multivariate analysis, representative of phloroglucinol trimethyl ether (‘Caihui’), citronellol (‘Jingyu’, ‘Zhaofen’ and ‘Baiyuan Zhenghui’) and mixed (the rest of the cultivars) chemotypes. ‘Zhaofen’ and ‘Jingyu’ also exhibited low levels of other rose-related compounds. The main components were subjected to a target network approach. Drug-likeness screening gave 20 compounds with predictive blood–brain barrier permeation. Compound target network identified six key compounds, namely nerol, citronellol, geraniol, geranic acid, cis-3-hexen-1-ol and 1-hexanol. Top enriched terms in GO, KEGG and DisGeNET were mostly related to the central nervous system (CNS). Protein—protein interactions revealed a core network of 14 targets, 11 of which were CNS-related (targets for antidepressants, analgesics, antipsychotics, anti-Alzheimer’s and anti-Parkinson’s agents). This work provides useful information on the production of woody peony essential oils with specific chemotypes and reveals their potential importance in aromatherapy for alternative treatment of CNS disorders.
Collapse
|
19
|
Dagur P, Rakshit G, Sheikh M, Biswas A, Jha P, Al-Khafaji K, Ghosh M. Target prediction, computational identification, and network-based pharmacology of most potential phytoconstituent in medicinal leaves of Justicia adhatoda against SARS-CoV-2. J Biomol Struct Dyn 2022; 41:3926-3942. [PMID: 35412437 DOI: 10.1080/07391102.2022.2059010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The current global epidemic of the novel coronavirus (SARS-CoV-2) has been labeled a global public health emergency since it is causing substantial morbidity and mortality on daily basis. We need to identify an effective medication against SARS-CoV-2 because of its fast dissemination and re-emergence. This research is being carried out as part of a larger strategy to identify the most promising therapeutic targets using protein-protein interactions analysis. Mpro has been identified as one of the most important therapeutic targets. In this study, we did in-silico investigations to identify the target and further molecular docking, ADME, and toxicity prediction were done to assess the potential phyto-active antiviral compounds from Justicia adhatoda as powerful inhibitors of the Mpro of SARS-COV-2. We also investigated the capacity of these molecules to create stable interactions with the Mpro using 100 ns molecular dynamics simulation. The highest scoring compounds (taraxerol, friedelanol, anisotine, and adhatodine) were also found to exhibit excellent solubility and pharmacodynamic characteristics. We employed MMPBSA simulations to assess the stability of docked molecules in the Mpro binding site, revealing that the above compounds form the most stable complex with the Mpro. Network-based Pharmacology suggested that the selected compounds have various modes of action against SARS-CoV-2 that include immunoreaction enrichment, inflammatory reaction suppression, and more. These findings point to a promising class of drugs that should be investigated further in biochemical and cell-based studies to see their effectiveness against nCOVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pankaj Dagur
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Murtuja Sheikh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Abanish Biswas
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Parineeta Jha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| | - Khattab Al-Khafaji
- Department of Medical Laboratory Technology, Al-Nisour University College, Baghdad, Iraq
| | - Manik Ghosh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi, Ranchi, India
| |
Collapse
|
20
|
Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4787643. [PMID: 35368757 PMCID: PMC8975657 DOI: 10.1155/2022/4787643] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/11/2021] [Accepted: 02/02/2022] [Indexed: 12/11/2022]
Abstract
Diterpenes and their derivatives have many biological activities, including anti-inflammatory and immunomodulatory effects. To date, several diterpenes, diterpenoids, and their laboratory-derived products have been demonstrated for antiarthritic activities. This study summarizes the literature about diterpenes and their derivatives acting against rheumatoid arthritis (RA) depending on the database reports until 31 August 2021. For this, we have conducted an extensive search in databases such as PubMed, Science Direct, Google Scholar, and Clinicaltrials.gov using specific relevant keywords. The search yielded 2708 published records, among which 48 have been included in this study. The findings offer several potential diterpenes and their derivatives as anti-RA in various test models. Among the diterpenes and their derivatives, andrographolide, triptolide, and tanshinone IIA have been found to exhibit anti-RA activity through diverse pathways. In addition, some important derivatives of triptolide and tanshinone IIA have also been shown to have anti-RA effects. Overall, findings suggest that these substances could reduce arthritis score, downregulate oxidative, proinflammatory, and inflammatory biomarkers, modulate various arthritis pathways, and improve joint destruction and clinical arthritic conditions, signs, symptoms, and physical functions in humans and numerous experimental animals, mainly through cytokine and chemokine as well as several physiological protein interaction pathways. Taken all together, diterpenes, diterpenoids, and their derivatives may be promising tools for RA management.
Collapse
|
21
|
Hossain R, Ray P, Sarkar C, Islam MS, Khan RA, Khalipha ABR, Islam MT, Cho WC, Martorell M, Sharifi-Rad J, Butnariu M, Umbetova A, Calina D. Natural Compounds or Their Derivatives against Breast Cancer: A Computational Study. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5886269. [PMID: 35837379 PMCID: PMC9276515 DOI: 10.1155/2022/5886269] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/30/2022] [Accepted: 06/21/2022] [Indexed: 12/21/2022]
Abstract
BACKGROUND Breast cancer is one of the most common types of cancer diagnosed and the second leading cause of death among women. Breast cancer susceptibility proteins of type 1 and 2 are human tumor suppressor genes. Genetic variations/mutations in these two genes lead to overexpression of human breast tumor suppressor genes (e.g., BRCA1, BRCA2), which triggers uncontrolled duplication of cells in humans. In addition, multidrug resistance protein 1 (MDR1), an important cell membrane protein that pumps many foreign substances from cells, is also responsible for developing resistance to cancer chemotherapy. Aim of the Study. The aim of this study was to analyze some natural compounds or their derivatives as part of the development of strong inhibitors for breast cancer. Methodology. Molecular docking studies were performed using compounds known in the literature to be effective against BRCA1 and BRCA2 and MDR1, with positive control being 5-fluorouracil, an antineoplastic drug as a positive control. RESULTS The binding affinity of the compounds was analyzed, and it was observed that they had a better binding affinity for the target proteins than the standard drug 5-fluorouracil. Among the compounds analyzed, α-hederin, andrographolide, apigenin, asiatic acid, auricular acid, sinularin, curcumin, citrinin, hispolon, nerol, phytol, retinol palmitate, and sclareol showed the best binding affinity energy to the BRCA1, BRCA2, and MDR1 proteins, respectively. CONCLUSIONS α-Hederin, andrographolide, apigenin, asiatic acid, auricular acid, hispolon, sclareol, curcumin, citrinin, and sinularin or their derivatives can be a good source of anticancer agents in breast cancer.
Collapse
Affiliation(s)
- Rajib Hossain
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Pranta Ray
- 2Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Chandan Sarkar
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md. Shahazul Islam
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Rasel Ahmed Khan
- 3Pharmacy Discipline, Life Science School, Khulna University, Khulna 9280, Bangladesh
| | - Abul Bashar Ripon Khalipha
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Muhammad Torequl Islam
- 1Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - William C. Cho
- 4Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong 999077, China
| | - Miquel Martorell
- 5Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | | | - Monica Butnariu
- 7Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Romania
| | - Almagul Umbetova
- 8Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - Daniela Calina
- 9Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
22
|
Munshi M, Zilani MNH, Islam MA, Biswas P, Das A, Afroz F, Hasan MN. Novel compounds from endophytic fungi of Ceriops decandra inhibit breast cancer cell growth through estrogen receptor alpha in in-silico study. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Dey D, Hasan MM, Biswas P, Papadakos SP, Rayan RA, Tasnim S, Bilal M, Islam MJ, Arshe FA, Arshad EM, Farzana M, Rahaman TI, Baral SK, Paul P, Bibi S, Rahman MA, Kim B. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade. Front Oncol 2022; 12:899009. [PMID: 35719997 PMCID: PMC9198638 DOI: 10.3389/fonc.2022.899009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/02/2022] [Indexed: 12/14/2022] Open
Abstract
Salvicine is a new diterpenoid quinone substance from a natural source, specifically in a Chinese herb. It has powerful growth-controlling abilities against a broad range of human cancer cells in both in vitro and in vivo environments. A significant inhibitory effect of salvicine on multidrug-resistant (MDR) cells has also been discovered. Several research studies have examined the activities of salvicine on topoisomerase II (Topo II) by inducing reactive oxygen species (ROS) signaling. As opposed to the well-known Topo II toxin etoposide, salvicine mostly decreases the catalytic activity with a negligible DNA breakage effect, as revealed by several enzymatic experiments. Interestingly, salvicine dramatically reduces lung metastatic formation in the MDA-MB-435 orthotopic lung cancer cell line. Recent investigations have established that salvicine is a new non-intercalative Topo II toxin by interacting with the ATPase domains, increasing DNA-Topo II interaction, and suppressing DNA relegation and ATP hydrolysis. In addition, investigations have revealed that salvicine-induced ROS play a critical role in the anticancer-mediated signaling pathway, involving Topo II suppression, DNA damage, overcoming multidrug resistance, and tumor cell adhesion suppression, among other things. In the current study, we demonstrate the role of salvicine in regulating the ROS signaling pathway and the DNA damage response (DDR) in suppressing the progression of cancer cells. We depict the mechanism of action of salvicine in suppressing the DNA-Topo II complex through ROS induction along with a brief discussion of the anticancer perspective of salvicine.
Collapse
Affiliation(s)
- Dipta Dey
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology (JUST), Jashore, Bangladesh
- ABEx Bio-Research Center, East Azampur, Dhaka, Bangladesh
| | - Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Rehab A. Rayan
- Department of Epidemiology, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Sabiha Tasnim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Muhammad Bilal
- College of Pharmacy, Liaquat University of Medical and Health Sciences, Jamshoro, Pakistan
| | - Mohammod Johirul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Farzana Alam Arshe
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Efat Muhammad Arshad
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Maisha Farzana
- College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom
| | - Tanjim Ishraq Rahaman
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Priyanka Paul
- Biochemistry and Molecular Biology department, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj, Bangladesh
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- Department of Biological Sciences, International Islamic University, Islamabad, Pakistan
| | - Md. Ataur Rahman
- Global Biotechnology & Biomedical Research Network (GBBRN), Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
- *Correspondence: Md. Ataur Rahman, ; Bonglee Kim,
| |
Collapse
|