1
|
Kirkwood A, Fisk I, Xu Y, Reid J, Yang N. Mechanisms of aroma compound formation during the drying of Dendrobium nobile stems (Shihu). Food Chem 2025; 464:141888. [PMID: 39536588 DOI: 10.1016/j.foodchem.2024.141888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
To ensure the aroma and flavour quality of dried herbs, it is essential to understand flavour reactions that occur during complex drying mechanisms. This study investigated aroma formation in dried Dendrobium nobile stems (Shihu), valued in Chinese cuisine and traditional medicine. Stems were dried in a convection oven over 48 h (70 °C). Carotenoids, amino acids, monosaccharides, and the resultant volatile compounds were quantified using HPLC-DAD, LC-MS/MS, HPAEC-PAD and GC-MS, respectively. β-ionone, 4-oxoisophorone and dihydroactinidiolide were formed through carotenoid degradation (supported by the concomitant loss of the precursor β-carotene). Safranal and β-damascenone were formed only through thermal drying. Methional and 3-methylbutanal were formed through Strecker degradation as part of the Maillard reaction, flavour precursors methionine and leucine, in addition to glucose, levels also reduced. This study provides quantified evidence revealing the mechanisms of flavour formation in Shihu during the drying process. This offers scientific strategies to enhance the flavour quality of other comparable food ingredients.
Collapse
Affiliation(s)
- Aidan Kirkwood
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Ian Fisk
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom; International Flavour Research Centre (Adelaide), School of Agriculture, Food and Wine and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia
| | - Yingjian Xu
- Golden Keys High-Tech Materials Co., Ltd, Building No. 3, Guizhou ChanTou Science and Tech Industrial Park, Hulei Road, Huchao Town, Guian new Area, Guizhou Province, China; Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Joshua Reid
- Food Materials Research Centre, Division of Food, Nutrition & Dietetics, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Ni Yang
- International Flavour Research Centre, Division of Food, Nutrition and Dietetics, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom.
| |
Collapse
|
2
|
Altay K, Dirim SN, Hayaloglu AA. Effects of different drying processes on the quality changes in Arapgir purple basil (Ocimum basilicum L.) leaves and drying-induced changes in bioactive and volatile compounds and essential oils. J Food Sci 2024. [PMID: 39592251 DOI: 10.1111/1750-3841.17515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/29/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
The aim of this research is to examine the effects of drying purple basil leaves (Ocimum basilicum L.) under different drying conditions (freeze drying, sun-drying, and convective drying [CD] at 45, 50, and 55°C and microwave drying at 350, 460, and 600 W) on color properties, total phenolic and anthocyanin content, antioxidant activities, and changes in the composition of volatile compounds and essential oils (EOs). Increasing the drying temperature and microwave power led to an improvement in the preservation of the total phenolic content of the samples by an average of 16.28% and 27.98%, respectively. Increasing the drying temperature resulted in lower anthocyanin content and antioxidant activity (AA); in contrast, increasing the microwave power resulted in higher anthocyanin content and AA when drying purple basil. The drying methods significantly changed the composition of volatiles and EOs, and microwave drying resulted in a different profile of volatiles and EO composition. The key volatile compounds in purple basil leaves were linalol (81.19-1176.09 µg/g dw), 1,8-cineole (45.15-816.16 µg/g dw), and methyl cinnamate (13.20-637.65 µg/g dw). On the other hand, methyl cinnamate (11.68%-57.66%) and linalool (0.02%-20.39%) were the main volatile compounds of EOs in basil leaves. In conclusion, the following drying methods are suitable for the protection of phenolic and anthocyanin compounds and high performance of AA: freeze drying, sun-drying, and CD at 45°C and microwave drying at 600 W.
Collapse
Affiliation(s)
- Kadriye Altay
- Ministry of Agriculture and Forestry, Olive Research Institute, Bornova, Izmir
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya
| | - Safiye Nur Dirim
- Department of Food Engineering, Engineering Faculty, Ege University, Bornova, İzmir
| | - Ali Adnan Hayaloglu
- Department of Food Engineering, Engineering Faculty, Inonu University, Malatya
| |
Collapse
|
3
|
Criado-Navarro I, Barba-Palomeque F, Pérez-Juan P, Ledesma-Escobar CA, Priego-Capote F. Drying of Saffron Petals as a Critical Step for the Stabilization of This Floral Residue Prior to Extraction of Bioactive Compounds. Foods 2024; 13:3724. [PMID: 39682795 DOI: 10.3390/foods13233724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/06/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Saffron petals represent floral biomass generally wasted due to rapid deterioration. Previous characterization studies have revealed the presence of bioactive compounds in petals, such as flavonols and anthocyanins. Petal stabilization is a challenge for the efficient isolation of these compounds. This research evaluated three different drying techniques before the solid-liquid extraction of bioactive compounds: oven-drying (40 and 60 °C), lyophilization, and vacuum evaporation (25 and 50 °C). The characterization of the extracts allowed the annotation of 22 metabolites with a quantitative predominance of anthocyanins and derivatives of kaempferol and quercetin. Oven-drying at 60 °C was the most suitable approach for extracting minor compounds, such as crocins and safranal, at concentrations below 1 mg/g dry weight. Vacuum evaporation (50 °C) and lyophilization were the most recommended strategies for efficiently isolating flavonoids. Therefore, drying saffron petals is crucial to ensure the efficient extraction of bioactive compounds.
Collapse
Affiliation(s)
- Inmaculada Criado-Navarro
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14071 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Francisco Barba-Palomeque
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14071 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Pedro Pérez-Juan
- Regulatory Council Foundation of the Protected Designation of Origin Azafrán de La Mancha, 45720 Toledo, Spain
| | - Carlos A Ledesma-Escobar
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14071 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14071 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
4
|
Ordoudi SA, Ricci C, Imparato G, Chroni M, Nucara A, Gerardino A, Bertani FR. A non-invasive, sensor-based approach to exploit the autofluorescence of saffron (Crocus sativus L.) for on-site evaluation of aging. Food Chem 2024; 455:139822. [PMID: 38824730 DOI: 10.1016/j.foodchem.2024.139822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/04/2024]
Abstract
So far, compliance with ISO 3632 standard specifications for top-quality saffron guarantees good agricultural and post-harvest production practices. Tracking early-stage oxidation remains challenging. Our study aims to address this issue by exploring the visible, fluorescence, and near-infrared spectra of category I saffron. Using a multi-spectral sensor, we tested fresh and artificially aged saffron in powder form. High autofluorescence intensities at 600-700 nm allowed calibration for the 'content of aged saffron'. Samples with minimum coloring strength (200-220 units) were classified as 70% aged, while those exceeding maximum aroma strength (50 units) as 100% aged. Consistent patterns across origin, age, and processing history indicated potential for objectively assessing early-oxidation markers. Further analyses uncovered multiple contributing fluorophores, including cis-apocarotenoids, correlated with FTIR-based aging markers. Our findings underscore that sensing autofluorescence of traded saffron presents an innovative quality diagnostic approach, paving new research pathways for assessing the remaining shelf-life along its supply chain.
Collapse
Affiliation(s)
- S A Ordoudi
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - C Ricci
- Institute for Photonics and Nanotechnologies, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - G Imparato
- Department of Physics, Sapienza University, Rome, Piazzale Aldo Moro 5, 00184 Rome, Italy.
| | - M Chroni
- Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - A Nucara
- Department of Physics, Sapienza University, Rome, Piazzale Aldo Moro 5, 00184 Rome, Italy.
| | - A Gerardino
- Institute for Photonics and Nanotechnologies, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| | - F R Bertani
- Institute for Photonics and Nanotechnologies, CNR, Via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
5
|
Pourmousavi L, Asadi RH, Zehsaz F, Jadidi RP. Potential therapeutic effects of crocin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7395-7420. [PMID: 38758225 DOI: 10.1007/s00210-024-03131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Crocin, a natural bioactive compound derived from saffron (Crocus sativus) and other Crocus genera, has gained significant attention recently due to its potential therapeutic properties. The multifaceted nature of crocin's biological effects has piqued the interest of researchers and health enthusiasts, prompting further investigations into its mechanisms of action and therapeutic applications. This review article comprehensively explores the emerging evidence supporting crocin's role as a promising ally in protecting against metabolic disorders. The review covers the molecular mechanisms underlying crocin's beneficial effects and highlights its potential applications in preventing and treating diverse pathological conditions. Understanding the mechanisms through which crocin exerts its protective effects could advance scientific knowledge and offer potential avenues for developing novel therapeutic interventions. As we uncover the potential of crocin as a valuable ally in the fight against disorders, it becomes evident that nature's palette holds remarkable solutions for enhancing our health.
Collapse
Affiliation(s)
- Laleh Pourmousavi
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Farzad Zehsaz
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
6
|
Marrone G, Urciuoli S, Di Lauro M, Cornali K, Montalto G, Masci C, Vanni G, Tesauro M, Vignolini P, Noce A. Saffron ( Crocus sativus L.) and Its By-Products: Healthy Effects in Internal Medicine. Nutrients 2024; 16:2319. [PMID: 39064764 PMCID: PMC11279474 DOI: 10.3390/nu16142319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Crocus sativus L., commonly known as saffron, is a precious spice coming from Asia, in particular from Iran, the country leader in its production. The spice is derived exclusively from dried stigmas and it is the most expensive one in the world. The areas of application of saffron are multiple, in fact ranging across the food, drinks, pharmaceuticals and cosmetics sectors. As is the case with other phytochemicals, not only the final product but also saffron by-products are considered a valuable source of bioactive natural compounds. In fact, its healthy effects, especially as antioxidants and anti-inflammatories (via reducing pro-inflammatory cytokines), are well-recognized in internal medicine. In particular, its healthy effects are related to counteracting degenerative maculopathy, depression and anxiety, neurodegenerative diseases, metabolic syndrome, cancer and chronic kidney disease, by promoting glucose metabolism. In this review, we summarize the most important papers in which saffron has turned out to be a valuable ally in the prevention and treatment of these pathologies. Moreover, we would like to promote the use of saffron by-products as part of a bio-circular economy system, aimed at reducing wastes, at maximizing the use of resources and at promoting environmental and economic sustainability.
Collapse
Affiliation(s)
- Giulia Marrone
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.M.); (M.T.)
| | - Silvia Urciuoli
- PHYTOLAB Laboratory (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), Department of Statistics, Computer Science, Applications “Giuseppe Parenti” (DiSIA), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.U.); (P.V.)
| | - Manuela Di Lauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.M.); (M.T.)
| | - Kevin Cornali
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.M.); (M.T.)
| | - Giulia Montalto
- School of Specialization in Nephrology, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Claudia Masci
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.M.); (M.T.)
| | - Gianluca Vanni
- Breast Unit Policlinico Tor Vergata, Department of Surgical Science, Tor Vergata University, Viale Oxford 81, 00133 Rome, Italy;
| | - Manfredi Tesauro
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.M.); (M.T.)
| | - Pamela Vignolini
- PHYTOLAB Laboratory (Pharmaceutical, Cosmetic, Food Supplement, Technology and Analysis), Department of Statistics, Computer Science, Applications “Giuseppe Parenti” (DiSIA), University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (S.U.); (P.V.)
| | - Annalisa Noce
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (G.M.); (M.D.L.); (C.M.); (M.T.)
- Nephrology and Dialysis Unit, Policlinico Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
7
|
Criado-Navarro I, Ledesma-Escobar CA, Pérez-Juan P, Priego-Capote F. Distribution of Main Bioactive Compounds from Saffron Species as a Function of Infusion Temperature and Time in an Oil/Water System. Molecules 2024; 29:3080. [PMID: 38999032 PMCID: PMC11243231 DOI: 10.3390/molecules29133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Most research on saffron has focused on its composition and beneficial effects, while the culinary perspective to enhance its gastronomic potential remains unexplored. This study aims to define the transfer of the main compounds responsible for color, flavor, and aromatic properties, evaluating three critical variables: temperature (60 °C, 80 °C and 100 °C), infusion time (ranging from 10 to 30 min), and the composition of the medium (water, oil, and water/oil). Samples were analyzed using the LC-QTOF MS/MS and ISO 3632-1:2011 methods. The major compounds were crocins, including trans-crocin and picrocrocin. Among the flavonoids, kaempferol 3-O-sophoroside stands out. Regarding extraction conditions, crocins, glycoside flavonoids, and picrocrocin were enhanced in water, the former in 100% water and at low temperatures, while picrocrocin proved to be the most stable compound with extraction favored at high temperatures. The variable with the greatest incidence of picrocrocin isolation seemed to be the concentration of water since water/oil compositions reported higher concentrations. Safranal and kaempferol were enriched in the oil phase and at lower temperatures. This study provides a chemical interpretation for the appropriate gastronomic use of saffron according to its versatility. Finally, the determination of safranal using the ISO method did not correlate with that obtained using chromatography.
Collapse
Affiliation(s)
- Inmaculada Criado-Navarro
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Carlos Augusto Ledesma-Escobar
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| | - Pedro Pérez-Juan
- Azafrán de La Mancha Protected Designation of Origin Regulatory Council, 45720 Camuñas, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, University of Córdoba, 14071 Córdoba, Spain
- Chemical Institute for Energy and Environment (iQUEMA), University of Córdoba, 14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- CIBER of Frailty and Healthy Ageing (CIBERFES), Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
8
|
Hua Z, Liu N, Yan X. Research progress on the pharmacological activity, biosynthetic pathways, and biosynthesis of crocins. Beilstein J Org Chem 2024; 20:741-752. [PMID: 38633914 PMCID: PMC11022409 DOI: 10.3762/bjoc.20.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
Crocins are water-soluble apocarotenoids isolated from the flowers of crocus and gardenia. They exhibit various pharmacological effects, including neuroprotection, anti-inflammatory properties, hepatorenal protection, and anticancer activity. They are often used as coloring and seasoning agents. Due to the limited content of crocins in plants and the high cost of chemical synthesis, the supply of crocins is insufficient to meet current demand. The biosynthetic pathways for crocins have been elucidated to date, which allows the heterologous production of these valuable compounds in microorganisms by fermentation. This review article provides a comprehensive overview of the chemistry, pharmacological activity, biosynthetic pathways, and heterologous production of crocins, aiming to lay the foundation for the large-scale production of these valuable natural products by using engineered microbial cell factories.
Collapse
Affiliation(s)
- Zhongwei Hua
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| | - Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin 301617, China
| |
Collapse
|
9
|
Zaaboul F, Tian T, Borah PK, Di Bari V. Thermally treated peanut oil bodies as a fat replacer for ice cream: Physicochemical and rheological properties. Food Chem 2024; 436:137630. [PMID: 37871553 DOI: 10.1016/j.foodchem.2023.137630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/08/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
This study investigates the potential use of peanut oil bodies as a fat replacer in ice cream. We explored the effects of different treatments, fresh (FOB), heated (HOB), and roasted (ROB) peanut oil bodies on ice cream preparation. Heat treatment altered the intrinsic protein profile on the oil bodies' surface, subsequently influencing the ice cream's properties. Notably, heat treatment increases the oil bodies' size and the absolute value of ζ-potential. The rheological analysis provided information about void volumes, indicating easier air incorporation during whipping for ROB (72 to 300 nm) than FOB (107 to 55 nm). ROB ice cream displays a high overrun and a lower melting rate compared to FOB ice cream. Moreover, thermal treatment reduces the beany flavors, n-hexanal, and 2-pentenylfuran. Overall, this study reveals peanut oil bodies as a promising platform for rational design of fat-substituted plant-based ice creams.
Collapse
Affiliation(s)
- Farah Zaaboul
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Food and Biomaterials Group, School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom.
| | - Tian Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Pallab Kumar Borah
- Food and Biomaterials Group, School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom
| | - Vincenzo Di Bari
- Food and Biomaterials Group, School of Biosciences, University of Nottingham, LE12 5RD, United Kingdom.
| |
Collapse
|
10
|
Mena-García A, Sanz ML, Díez-Municio M, Ruiz-Matute AI. A Combined Gas and Liquid Chromatographic Approach for Quality Evaluation of Saffron-Based Food Supplements. Foods 2023; 12:4071. [PMID: 38002129 PMCID: PMC10670060 DOI: 10.3390/foods12224071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Considering the interest in the bioactive properties of saffron (Crocus sativus L.), as well as its limited production and high price, saffron-based food supplements (SFS) are highly susceptible to adulteration. However, their complex composition and the wide variety of potential fraudulent practices make the comprehensive assessment of SFS quality a challenging task that has been scarcely addressed. To that aim, a new multianalytical strategy based on gas chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography with diode array detection coupled to mass spectrometry (HPLC-DAD-MS) was developed and validated in order to detect different frauds affecting SFS. Dried saffron stigmas and a commercial standardized saffron extract (affron®) were selected as reference samples (RS) to obtain an authenticity profile, which was further used to evaluate the quality of 17 SFS. Up to 17 crocins and crocetins, 5 kaempferol glycosides, picrocrocin (determined for the first time by GC-MS), safranal, furanone and isophorone-related compounds were determined in RS. Safranal and crocins were identified in all SFS except for one sample. However, discrepancies with the content declared were detected in 65% of the cases. Moreover, this multianalytical methodology also allowed identifying undeclared additives and the non-declared addition of vegetable sources other than saffron.
Collapse
Affiliation(s)
- Adal Mena-García
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-G.); (A.I.R.-M.)
- Pharmactive Biotech Products, S.L.U. Faraday 7, 28049 Madrid, Spain;
| | - María L. Sanz
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-G.); (A.I.R.-M.)
| | | | - Ana I. Ruiz-Matute
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.M.-G.); (A.I.R.-M.)
| |
Collapse
|
11
|
Pourbagher-Shahri AM, Forouzanfar F. Saffron (Crocus sativus) and its constituents for pain management: A review of current evidence. Phytother Res 2023; 37:5041-5057. [PMID: 37528638 DOI: 10.1002/ptr.7968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/03/2023]
Abstract
Pain can become a chronic and deliberating experience with a significant burden. In preclinical and clinical studies, Saffron (Crocus sativus L.) has shown analgesic activities. Considering the unsatisfactory results of current therapeutic management for chronic pain conditions, we aimed to review saffron's analgesic activity and underlying mechanisms. Saffron showed antinociceptive activities in formalin-, carrageenan-, and capsaicin-induced experimental pain models. Saffron analgesic activities affected several targets, including ion channels of nociceptors; the adrenergic system and central histaminic system; inhibition of inflammatory pathways, apoptotic pathways, and oxidative stress; regulation of NO pathway, and the endocannabinoid system. Clinical studies showed analgesia of Saffron in rheumatoid arthritis, after-pain following childbirth, dysmenorrhea, and fibromyalgia. Our literature review showed that saffron can be beneficial as an adjunct therapy to commonly used analgesics in practice, particularly in chronic pain conditions.
Collapse
Affiliation(s)
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Jiang Y, Zhao Q, Deng H, Li Y, Gong D, Huang X, Long D, Zhang Y. The Nutrients and Volatile Compounds in Stropharia rugoso-annulata by Three Drying Treatments. Foods 2023; 12:foods12102077. [PMID: 37238895 DOI: 10.3390/foods12102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/19/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to examine the differences in the nutrients and volatile compounds of Stropharia rugoso-annulata after undergoing three different drying treatments. The fresh mushrooms were dried using hot air drying (HAD), vacuum freeze drying (VFD), and natural air drying (NAD), respectively. After that, the nutrients, volatile components, and sensory evaluation of the treated mushrooms were comparably analyzed. Nutrients analysis included proximate compositions, free amino acids, fatty acids, mineral elements, bioactive compositions, and antioxidant activity. Volatile components were identified by headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and analyzed with principal component analysis (PCA). Finally, sensory evaluation was conducted by ten volunteers for five sensory properties. The results showed that the HAD group had the highest vitamin D2 content (4.00 μg/g) and antioxidant activity. Compared with other treatments, the VFD group had higher overall nutrient contents, as well as being more preferred by consumers. Additionally, there were 79 volatile compounds identified by HS-SPME-GC-MS, while the NAD group showed the highest contents of volatile compounds (1931.75 μg/g) and volatile flavor compounds (1307.21 μg/g). PCA analysis suggested the volatile flavor compositions were different among the three groups. In summary, it is recommended that one uses VFD for obtaining higher overall nutritional values, while NAD treatment increased the production of volatile flavor components of the mushroom.
Collapse
Affiliation(s)
- Yu Jiang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qilong Zhao
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Haolan Deng
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou 730000, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
13
|
Mena-García A, Herrero-Gutiérrez D, Sanz ML, Díez-Municio M, Ruiz-Matute AI. Fingerprint of Characteristic Saffron Compounds as Novel Standardization of Commercial Crocus sativus Extracts. Foods 2023; 12:foods12081634. [PMID: 37107430 PMCID: PMC10137349 DOI: 10.3390/foods12081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Food supplements based on saffron (Crocus sativus L.) dried stigma extracts are widely consumed due to their multiple bioactive properties. Saffron extract (SE) standardization is of crucial importance, as it determines the reproducibility of the product quality and is essential for the evaluation of its bioactive effect and safety. Although SEs are commonly standardized considering their safranal content, the lack of specificity of the official methods may give inaccurate measurements. In addition to the development of more precise methodologies, the evaluation of alternative saffron components, such as crocins and picrocrocin, for standardization purposes would also be of interest. Thus, in this study, qualitative and quantitative information regarding picrocrocin and crocin isomers of different commercial saffron extracts was first obtained by a validated methodology using liquid chromatography (HPLC) coupled to diode array (DAD) and mass spectrometer (MS) detectors. Principal component analysis (PCA) was applied to gain insight into the compositional variability and natural grouping of SE. These studies suggested the potential use of the relative content of crocin isomers and trans-/cis-crocins and trans-4 GG/picrocrocin ratios as novel criteria for SE standardization. Their reproducibility and stability under controlled storage conditions for 36 months was demonstrated in a commercial standardized SE (affron®).
Collapse
Affiliation(s)
- Adal Mena-García
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Pharmactive Biotech Products, S.L.U. Faraday 7, 28049 Madrid, Spain
| | | | - María L Sanz
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | - Ana I Ruiz-Matute
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
14
|
Drioiche A, Ailli A, Handaq N, Remok F, Elouardi M, Elouadni H, Al Kamaly O, Saleh A, Bouhrim M, Elazzouzi H, El Makhoukhi F, Zair T. Identification of Compounds of Crocus sativus by GC-MS and HPLC/UV-ESI-MS and Evaluation of Their Antioxidant, Antimicrobial, Anticoagulant, and Antidiabetic Properties. Pharmaceuticals (Basel) 2023; 16:ph16040545. [PMID: 37111302 PMCID: PMC10144431 DOI: 10.3390/ph16040545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
In order to valorize the species Crocus sativus from Morocco and to prepare new products with high added value that can be used in the food and pharmaceutical industry, our interest was focused on the phytochemical characterization and the biological and pharmacological properties of the stigmas of this plant. For this purpose, the essential oil of this species, extracted by hydrodistillation and then analyzed by GC-MS, revealed a predominance of phorone (12.90%); (R)-(-)-2,2-dimethyl-1,3-dioxolane-4-methanol (11.65%); isopropyl palmitate (9.68%); dihydro-β-ionone (8.62%); safranal (6.39%); trans-β-ionone (4.81%); 4-keto-isophorone (4.72%); and 1-eicosanol (4.55%) as the major compounds. The extraction of phenolic compounds was performed by decoction and Soxhlet extraction. The results of the determination of flavonoids, total polyphenols, condensed tannins, and hydrolyzable tannins determined by spectrophotometric methods on aqueous and organic extracts have proved the richness of Crocus sativus in phenolic compounds. Chromatographic analysis by HPLC/UV-ESI-MS of Crocus sativus extracts revealed the presence of crocin, picrocrocin, crocetin, and safranal molecules specific to this species. The study of antioxidant activity by three methods (DPPH, FRAP, and total antioxidant capacity) has proved that C. sativus is a potential source of natural antioxidants. Antimicrobial activity of the aqueous extract (E0) was investigated by microdilution on a microplate. The results have revealed the efficacy of the aqueous extract against Acinetobacter baumannii and Shigella sp. with MIC ≤ 600 µg/mL and against Aspergillus niger, Candida kyfer, and Candida parapsilosis with MIC = 2500 µg/mL. Measurements of pro-thrombin time (PT) and activated partial thromboplastin time (aPTT) in citrated plasma obtained from routine healthy blood donors were used to determine the anticoagulant activity of aqueous extract (E0). The anticoagulant activity of the extract (E0) studied showed that this extract can significantly prolong the partial thromboplastin time (p < 0.001) with a 359 µg/mL concentration. The antihyperglycemic effect of aqueous extract was studied in albino Wistar rats. The aqueous extract (E0) showed strong in vitro inhibitory activity of α-amylase and α-glucosidase compared with acarbose. Thus, it very significantly inhibited postprandial hyperglycemia in albino Wistar rats. According to the demonstrated results, we can affirm the richness of Crocus sativus stigmas in bioactive molecules and its use in traditional medicine.
Collapse
Affiliation(s)
- Aziz Drioiche
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
- Medical Microbiology Laboratory, Mohamed V. Hospital, Meknes 50000, Morocco
| | - Atika Ailli
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Nadia Handaq
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
- Research Team of Enhancement and Protection of Plants, Laboratory of Environmental Biology and Sustainable Development, Higher Normal School, Abdelmalek Essaadi University, Tetouan 93000, Morocco
| | - Firdaous Remok
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Mohamed Elouardi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Hajar Elouadni
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Omkulthom Al Kamaly
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal 23000, Morocco
| | - Hanane Elazzouzi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Fadoua El Makhoukhi
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| | - Touriya Zair
- Research Team of Chemistry of Bioactive Molecules and the Environment, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismaïl University, B.P. 11201 Zitoune, Meknes 50070, Morocco
| |
Collapse
|
15
|
Foschi M, Tozzi L, Di Donato F, Biancolillo A, D’Archivio AA. A Novel FTIR-Based Chemometric Solution for the Assessment of Saffron Adulteration with Non-Fresh Stigmas. Molecules 2022; 28:molecules28010033. [PMID: 36615229 PMCID: PMC9821794 DOI: 10.3390/molecules28010033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
The development of fast, non-destructive, and green methods with adequate sensitivity for saffron authentication has important implications in the quality control of the entire production chain of this precious spice. In this context, the highly suitable sensitivity of a spectroscopic method coupled with chemometrics was verified. A total number of 334 samples were analyzed using attenuated-total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy; the collected spectra were processed by partial-least-squares discriminant analysis (PLS-DA) to evaluate the feasibility of this study for the discrimination between compliant saffron (fresh samples produced in 2020) and saffron samples adulterated with non-fresh stigmas produced in 2018 and 2016. PLS-DA was able to classify the saffron samples in accordance with the aging time and to discriminate fresh samples from the samples adulterated with non-fresh (legally expired) stigmas, achieving 100% of both sensitivity and specificity in external prediction. Moreover, PLS regression was able to predict the adulteration level with sufficient accuracy (the root-mean-square error of prediction was approximately 3-5%). In summary, ATR-FTIR and chemometrics can be employed to highlight the illegal blending of fresh saffron with unsold stocks of expired saffron, which may be a common fraudulent practice not yet considered in the scientific literature.
Collapse
|
16
|
Ali A, Yu L, Kousar S, Khalid W, Maqbool Z, Aziz A, Arshad MS, Aadil RM, Trif M, Riaz S, Shaukat H, Manzoor MF, Qin H. Crocin: Functional characteristics, extraction, food applications and efficacy against brain related disorders. Front Nutr 2022; 9:1009807. [PMID: 36583211 PMCID: PMC9792498 DOI: 10.3389/fnut.2022.1009807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Crocin is a bioactive compound that naturally occurs in some medicinal plants, especially saffron and gardenia fruit. Different conventional and novel methods are used for its extraction. Due to some control conditions, recent methods such as ultrasonic extraction, supercritical fluid extraction, enzyme-associated extraction, microwave extraction, and pulsed electric field extraction are widely used because these methods give more yield and efficiency. Crocin is incorporated into different food products to make functional foods. However, it can also aid in the stability of food products. Due to its ability to protect against brain diseases, the demand for crocin has been rising in the pharmaceutical industry. It also contain antioxidant, anti-inflammatory, anticancer and antidepressant qualities. This review aims to describe crocin and its role in developing functional food, extraction, and bioavailability in various brain-related diseases. The results of the literature strongly support the importance of crocin against various diseases and its use in making different functional foods.
Collapse
Affiliation(s)
- Anwar Ali
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Liang Yu
- Department of Research and Development Office, Hunan First Normal University, Changsha, China,*Correspondence: Liang Yu
| | - Safura Kousar
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Waseem Khalid
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Zahra Maqbool
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Afifa Aziz
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Sajid Arshad
- Department of Food Science, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Monica Trif
- Food Research Department, Centre for Innovative Process Engineering, Syke, Germany
| | - Sakhawat Riaz
- Department of Home Economics, Government College University, Faisalabad, Pakistan,Food and Nutrition Society, Gilgit Baltistan, Pakistan
| | - Horia Shaukat
- Xiangya School of Public Health, Central South University, Changsha, China
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China,School of Food Science and Engineering, South China University of Technology, Guangzhou, China,Muhammad Faisal Manzoor
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, China,Hong Qin
| |
Collapse
|
17
|
Avila-Sosa R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Hernández-Carranza P, Cid-Pérez TS. Detection of Saffron’s Main Bioactive Compounds and Their Relationship with Commercial Quality. Foods 2022. [PMCID: PMC9601577 DOI: 10.3390/foods11203245] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This review aims to evaluate the state of saffron’s main bioactive compounds and their relationship with its commercial quality. Saffron is the commercial name for the dried red stigmas of the Crocus sativus L. flower. It owes its sensory and functional properties mainly to the presence of its carotenoid derivatives, synthesized throughout flowering and also during the whole production process. These compounds include crocin, crocetin, picrocrocin, and safranal, which are bioactive metabolites. Saffron’s commercial value is determined according to the ISO/TS3632 standard that determines their main apocatotenoids. Other techniques such as chromatography (gas and liquid) are used to detect the apocarotenoids. This, together with the determination of spectral fingerprinting or chemo typing are essential for saffron identification. The determination of the specific chemical markers coupled with chemometric methods favors the discrimination of adulterated samples, possible plants, or adulterating compounds and even the concentrations at which these are obtained. Chemical characterization and concentration of various compounds could be affected by saffron’s geographical origin and harvest/postharvest characteristics. The large number of chemical compounds found in the by-products (flower parts) of saffron (catechin, quercetin, delphinidin, etc.) make it an interesting aromatic spice as a colorant, antioxidant, and source of phytochemicals, which can also bring additional economic value to the most expensive aromatic species in the world.
Collapse
Affiliation(s)
- Raul Avila-Sosa
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Addí Rhode Navarro-Cruz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Paola Hernández-Carranza
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
| | - Teresa Soledad Cid-Pérez
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Edificio 105E, 14 Sur y Av. San Claudio, Ciudad Universitaria, Col. San Manuel, Puebla 72420, Mexico
- Correspondence:
| |
Collapse
|
18
|
Cerdá-Bernad D, Clemente-Villalba J, Valero-Cases E, Pastor JJ, Frutos MJ. Novel Insight into the Volatile Profile and Antioxidant Properties of Crocus sativus L. Flowers. Antioxidants (Basel) 2022; 11:1650. [PMID: 36139726 PMCID: PMC9495350 DOI: 10.3390/antiox11091650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The current production system of saffron spice generates hundreds of tons of waste. Thus, the aim of this study was to value both saffron and its floral by-products as a source of natural bioactive extracts, studying the in vitro antioxidant capacity, the composition of the volatile fraction by GC-MS/MS, and the determination of crocetins esters by HPLC-PDA. Saffron stigmas and floral by-products showed a high content of polyphenols and different antioxidant properties. Floral bio-residues (tepals, stamens, and styles) presented a high concentration of anthocyanins, and stigmas had high levels of flavonoids, β-carotene, and total crocins. In stigmas, 25 different volatile components were found, with safranal the most relevant. Floral by-products volatile composition consisted of 55 compounds with varying amounts depending on the drying treatment; all the samples presented acetic acid, 2(5H)-furanone, and phenylethyl alcohol. Therefore, saffron stigmas and flower by-products represent a sustainable source of bioactive ingredients for innovative healthy food formulations.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | - Jesús Clemente-Villalba
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | - Joaquín-Julián Pastor
- Engineering Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | - María-José Frutos
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
19
|
Safety Assessment and Pain Relief Properties of Saffron from Taliouine Region (Morocco). Molecules 2022; 27:molecules27103339. [PMID: 35630819 PMCID: PMC9144369 DOI: 10.3390/molecules27103339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/16/2022] Open
Abstract
Saffron is the most expensive spice in the world. In addition to its culinary utilization, this spice is used for medicinal purposes such as in pain management. In this study, the analgesic activity of Crocus sativus stigma extract (CSSE) was evaluated in rodents and its possible physiological mechanism was elucidated. The anti-nociceptive effect of CSSE was evaluated using three animal models (hot plate, writhing, and formalin tests). The analgesic pathways involved were assessed using various analgesia-mediating receptors antagonists. The oral administration of CSSE, up to 2000 mg/kg, caused no death or changes in the behavior or in the hematological and biochemical blood parameters of treated animals nor in the histological architecture of the animals’ livers and kidneys. CSSE showed a central, dose-dependent, anti-nociceptive effect in response to thermal stimuli; and a peripheral analgesic effect in the test of contortions induced by acetic acid. The dual (central and peripheral) analgesic effect was confirmed by the formalin test. The anti-nociceptive activity of CSSE was totally or partially reversed by the co-administration of receptor antagonists, naloxone, atropine, haloperidol, yohimbine, and glibenclamide. CSSE influenced signal processing, by the modulation of the opioidergic, adrenergic, and muscarinic systems at the peripheral and central levels; and by regulation of the dopaminergic system and control of the opening of the ATP-sensitive K+ channels at the spinal level. The obtained data point to a multimodal mechanism of action for CSSE: An anti-inflammatory effect and a modulation, through different physiological pathways, of the electrical signal generated by the nociceptors. Further clinical trials are required to endorse the potential utilization of Moroccan saffron as a natural painkiller.
Collapse
|
20
|
Optimized Isolation of Safranal from Saffron by Solid-Phase Microextraction (SPME) and Rotatable Central Composite Design-Response Surface Methodology (RCCD-RSM). SEPARATIONS 2022. [DOI: 10.3390/separations9020048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Safranal is the main aroma component of saffron stigmas. It is also a great antioxidant with known pharmacological properties and is a potent indicator for the grading and authentication of saffron. In this study, the optimum extraction conditions of safranal from saffron stigmas were investigated using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) and response surface methodology (RSM). A rotatable-central composite design was applied, and a linear regression model has been used for the model building. The optimized factors were as follows: sample weight (15 mg), water volume (4 mL), exposure time in the headspace (20 min), and extraction temperature (45 °C). All factors were found significant; however, extraction temperature and exposure time were the most important for the isolation of safranal. The obtained model was successfully validated with a test set of saffron samples analyzed under the optimum extraction conditions. The optimized SPME extraction conditions of safranal found in this study contribute to the efforts towards the detection of saffron authentication and adulteration.
Collapse
|
21
|
Cozzolino R, Stocchero M, Perestrelo R, Câmara JS. Comprehensive Evaluation of the Volatomic Fingerprint of Saffron from Campania towards Its Authenticity and Quality. Foods 2022; 11:366. [PMID: 35159517 PMCID: PMC8834390 DOI: 10.3390/foods11030366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
The volatile profiles of eight saffron samples (seven cultivated and one spontaneous) grown in different geographical districts within the Campania region (southern Italy) were compared. Using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS), overall, 80 volatiles were identified in the eight landraces. Among them, safranal and its isomers and other related compounds such as isophorones, which are not only key odorants but also pharmacologically active metabolites, have been detected in all the investigated samples. Principal Component Analysis performed on the volatiles' compounds revealed that the spontaneous sample turned out to be an outlier. In particular, the volatile organic compounds (VOCs) profile of the spontaneous saffron presented four lilac aldehydes and four lilac alcohol isomers, which, to the authors' knowledge, have never been identified in the volatile signature of this spice. The multivariate statistical analysis allowed the discrimination of the seven cultivate saffron ecotypes in four well-separated clusters according to variety. Moreover, 20 VOCs, able to differentiate the clusters in terms of single volatile metabolite, were discovered. Altogether, these results could contribute to identifying possible volatile signature metabolites (biomarkers) or patterns that discriminate saffron samples grown in Campania region on a molecular basis, encouraging future biodiversity programs to preserve saffron landraces revealing valuable genetic resources.
Collapse
Affiliation(s)
- Rosaria Cozzolino
- National Research Council (CNR), Institute of Food Science, Via Roma 64, 83100 Avellino, Italy
| | - Matteo Stocchero
- Department of Women’s and Children’s Health, University of Padova, 35122 Padova, Italy;
| | - Rosa Perestrelo
- Centro de Química da Madeira—CQM, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - José S. Câmara
- Centro de Química da Madeira—CQM, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal
| |
Collapse
|
22
|
Butnariu M, Quispe C, Herrera-Bravo J, Sharifi-Rad J, Singh L, Aborehab NM, Bouyahya A, Venditti A, Sen S, Acharya K, Bashiry M, Ezzat SM, Setzer WN, Martorell M, Mileski KS, Bagiu IC, Docea AO, Calina D, Cho WC. The Pharmacological Activities of Crocus sativus L.: A Review Based on the Mechanisms and Therapeutic Opportunities of its Phytoconstituents. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8214821. [PMID: 35198096 PMCID: PMC8860555 DOI: 10.1155/2022/8214821] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 01/22/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Crocus species are mainly distributed in North Africa, Southern and Central Europe, and Western Asia, used in gardens and parks as ornamental plants, while Crocus sativus L. (saffron) is the only species that is cultivated for edible purpose. The use of saffron is very ancient; besides the use as a spice, saffron has long been known also for its medical and coloring qualities. Due to its distinctive flavor and color, it is used as a spice, which imparts food preservative activity owing to its antimicrobial and antioxidant activity. This updated review discusses the biological properties of Crocus sativus L. and its phytoconstituents, their pharmacological activities, signaling pathways, and molecular targets, therefore highlighting it as a potential herbal medicine. Clinical studies regarding its pharmacologic potential in clinical therapeutics and toxicity studies were also reviewed. For this updated review, a search was performed in the PubMed, Science, and Google Scholar databases using keywords related to Crocus sativus L. and the biological properties of its phytoconstituents. From this search, only the relevant works were selected. The phytochemistry of the most important bioactive compounds in Crocus sativus L. such as crocin, crocetin, picrocrocin, and safranal and also dozens of other compounds was studied and identified by various physicochemical methods. Isolated compounds and various extracts have proven their pharmacological efficacy at the molecular level and signaling pathways both in vitro and in vivo. In addition, toxicity studies and clinical trials were analyzed. The research results highlighted the various pharmacological potentials such as antimicrobial, antioxidant, cytotoxic, cardioprotective, neuroprotective, antidepressant, hypolipidemic, and antihyperglycemic properties and protector of retinal lesions. Due to its antioxidant and antimicrobial properties, saffron has proven effective as a natural food preservative. Starting from the traditional uses for the treatment of several diseases, the bioactive compounds of Crocus sativus L. have proven their effectiveness in modern pharmacological research. However, pharmacological studies are needed in the future to identify new mechanisms of action, pharmacokinetic studies, new pharmaceutical formulations for target transport, and possible interaction with allopathic drugs.
Collapse
Affiliation(s)
- Monica Butnariu
- 1Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timișoara, Romania
| | - Cristina Quispe
- 2Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- 3Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- 4Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | | | - Laxman Singh
- 6G.B. Pant National Institute of Himalayan Environment & Sustainable Development Kosi-Katarmal, Almora, Uttarakhand, India
| | - Nora M. Aborehab
- 7Biochemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Abdelhakim Bouyahya
- 8Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University of Rabat, Morocco
| | - Alessandro Venditti
- 9Dipartimento di Chimica, “Sapienza” Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Surjit Sen
- 10Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
- 11Department of Botany, Fakir Chand College, Diamond Harbour, West Bengal 743331, India
| | - Krishnendu Acharya
- 10Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata 700019, India
| | - Moein Bashiry
- 12Department of Food Science and Technology, Nutrition and Food Sciences Faculty, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahira M. Ezzat
- 13Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- 14Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - William N. Setzer
- 15Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Miquel Martorell
- 16Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Ksenija S. Mileski
- 17Department of Morphology and Systematic of Plants, Faculty of Biology, University of Belgrade, Studentski Trg 16, 11000 Belgrade, Serbia
| | - Iulia-Cristina Bagiu
- 18Victor Babes University of Medicine and Pharmacy of Timisoara Discipline of Microbiology, Timișoara, Romania
- 19Multidisciplinary Research Center on Antimicrobial Resistance, Timișoara, Romania
| | - Anca Oana Docea
- 20Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- 21Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- 22Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|