1
|
Berköz M, Aslan A, Yunusoğlu O, Krośniak M, Francik R. Hepatoprotective potentials of Usnea longissima Ach. and Xanthoparmelia somloensis (Gyelnik) Hale extracts in ethanol-induced liver injury. Drug Chem Toxicol 2025; 48:136-149. [PMID: 39322224 DOI: 10.1080/01480545.2024.2407867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
In our study, the antioxidant and anti-inflammatory effects of different lichen applications were investigated in rats using an experimental ethanol toxicity model. 48 rats were used in the study and they were divided into 6 groups with 8 rats in each group. These groups were: control, ethanol (2 g/kg), ethanol + Usnea longissima Ach. (200 mg/kg), ethanol + Usnea longissima Ach. (400 mg/kg), ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (100 mg/kg) and ethanol + Xanthoparmelia somloensis (Gyelnik) Hale (200 mg/kg). The experimental work continued for 21 days. Lichen extracts and ethanol were administered by gavage to rats divided into groups. According to the experimental protocol, the experimental animals were sacrificed and their liver tissues were isolated. Biochemical parameters in serum, histological examinations, oxidative stress and inflammation parameters both at biochemical and molecular level in liver tissues were performed. Oxidative stress and inflammatory response were increased in the liver tissue of rats treated with ethanol for 21 days, and liver functions were impaired. It was found that U. longissima and X. somloensis extracts showed good antioxidant activity and conferred protective effects against ethanol-induced oxidative stress and inflammation. This could be attributed to the presence of secondary metabolites in the extract, which act as natural antioxidants and could be responsible for increasing the defence mechanisms against free radical production induced by ethanol administration.
Collapse
Affiliation(s)
- Mehmet Berköz
- Department of Biochemistry, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
| | - Ali Aslan
- Department of Pharmacology, Faculty of Pharmacy, Van Yuzuncu Yil University, Van, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Oruç Yunusoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Bolu Abant İzzet Baysal University, Bolu, Turkey
| | - Mirosław Krośniak
- Department of Food Chemistry and Nutrition, Medical College, Jagiellonian University, Cracow, Poland
| | - Renata Francik
- Department of Bioorganic Chemistry, Medical College, Jagiellonian University, Cracow, Poland
| |
Collapse
|
2
|
Mahmoud AAN, Ahmed EA, Omar AR. Thiacloprid impairs reproductive functions of male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6197-6211. [PMID: 38441570 PMCID: PMC11329541 DOI: 10.1007/s00210-024-03025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/23/2024] [Indexed: 08/18/2024]
Abstract
Global male infertility correlated to the rise of endocrine-disrupting chemicals, including insecticides, has grown into a pressing problem. Thiacloprid is one of the most commonly used neonicotinoids that accounts for more than 25% of the global pesticide industry. However, its impact on the reproductive system and male fertility has not been fully elucidated. The object of this study was to explore the adverse effects of thiacloprid on male Wistar rats' reproductive system. Thirty healthy male rats were separated into one of three groups: control group, and two groups that were orally administered with low (22.5 mg/kg) and high dose (62.1 mg/kg) of thiacloprid for 56 days. Thiacloprid significantly (p<0.05) reduced body weight and relative testicular weight, as well as sperm quality (count, motility, viability, and morphology), in a dose-dependent manner. THIA-treated groups revealed a large effect (d > 0.8) on semen quality with Cohen's d of (6.57, 8.82), (20.14, 23.54), and (2.81, 9.10) for count, motility, and viability respectively. Meanwhile, the serum testosterone level dropped while the levels of luteinizing and follicle-stimulating hormones increased. 17ꞵ-hydroxy steroid dehydrogenase and 3ꞵ-hydroxy steroid dehydrogenase levels were significantly decreased in a dose-dependent manner. The activity of the tested antioxidant enzymes catalase (CAT), glutathione reduced (GSH), and superoxide dismutase (SOD) exhibited a considerable decrease compared to the control group with a significant elevation in the lipid peroxidation activity as indicated by malondialdehyde (MDA) level. The testicular histology revealed degenerative changes in spermatogenic cells and interstitial tissue. Comet assay revealed DNA fragmentation in treated groups' testicular tissue. Thiacloprid exposure interferes with reproductive function and impairs male Wistar rat fertility. Such harmful consequences may also develop in humans frequently exposed to thiacloprid.
Collapse
Affiliation(s)
| | | | - Amel Ramadan Omar
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Rabelo ACS, Andrade AKDL, Costa DC. The Role of Oxidative Stress in Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis of Preclinical Studies. Nutrients 2024; 16:1174. [PMID: 38674865 PMCID: PMC11055095 DOI: 10.3390/nu16081174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Alcoholic Fatty Liver Disease (AFLD) is characterized by the accumulation of lipids in liver cells owing to the metabolism of ethanol. This process leads to a decrease in the NAD+/NADH ratio and the generation of reactive oxygen species. A systematic review and meta-analysis were conducted to investigate the role of oxidative stress in AFLD. A total of 201 eligible manuscripts were included, which revealed that animals with AFLD exhibited elevated expression of CYP2E1, decreased enzymatic activity of antioxidant enzymes, and reduced levels of the transcription factor Nrf2, which plays a pivotal role in the synthesis of antioxidant enzymes. Furthermore, animals with AFLD exhibited increased levels of lipid peroxidation markers and carbonylated proteins, collectively contributing to a weakened antioxidant defense and increased oxidative damage. The liver damage in AFLD was supported by significantly higher activity of alanine and aspartate aminotransferase enzymes. Moreover, animals with AFLD had increased levels of triacylglycerol in the serum and liver, likely due to reduced fatty acid metabolism caused by decreased PPAR-α expression, which is responsible for fatty acid oxidation, and increased expression of SREBP-1c, which is involved in fatty acid synthesis. With regard to inflammation, animals with AFLD exhibited elevated levels of pro-inflammatory cytokines, including TNF-a, IL-1β, and IL-6. The heightened oxidative stress, along with inflammation, led to an upregulation of cell death markers, such as caspase-3, and an increased Bax/Bcl-2 ratio. Overall, the findings of the review and meta-analysis indicate that ethanol metabolism reduces important markers of antioxidant defense while increasing inflammatory and apoptotic markers, thereby contributing to the development of AFLD.
Collapse
Affiliation(s)
- Ana Carolina Silveira Rabelo
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
- Department of Biochemistry, Federal University of Alfenas, Alfenas 37130-001, Brazil
| | | | - Daniela Caldeira Costa
- Postgraduate Program in Biological Sciences, Federal University of Ouro Preto, Ouro Preto 35402-163, Brazil
| |
Collapse
|
4
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
5
|
Niu MT, Chen QW, Chen Z, Liu X, Huang QX, Liang JL, Zhong Z, Cheng H, Zhang XZ. Immunoadjuvant-Modified Rhodobacter sphaeroides Potentiate Cancer Photothermal Immunotherapy. NANO LETTERS 2024; 24:130-139. [PMID: 38150297 DOI: 10.1021/acs.nanolett.3c03191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Photothermal immunotherapy has become a promising strategy for tumor treatment. However, the intrinsic drawbacks like light instability, poor immunoadjuvant effect, and poor accumulation of conventional inorganic or organic photothermal agents limit their further applications. Based on the superior carrying capacity and active tumor targeting property of living bacteria, an immunoadjuvant-intensified and engineered tumor-targeting bacterium was constructed to achieve effective photothermal immunotherapy. Specifically, immunoadjuvant imiquimod (R837)-loaded thermosensitive liposomes (R837@TSL) were covalently decorated onto Rhodobacter sphaeroides (R.S) to obtain nanoimmunoadjuvant-armed bacteria (R.S-R837@TSL). The intrinsic photothermal property of R.S combined R837@TSL to achieve in situ near-infrared (NIR) laser-controlled release of R837. Meanwhile, tumor immunogenic cell death (ICD) caused by photothermal effect of R.S-R837@TSL, synergizes with released immunoadjuvants to promote maturation of dendritic cells (DCs), which enhance cytotoxic T lymphocytes (CTLs) infiltration for further tumor eradication. The photosynthetic bacteria armed with immunoadjuvant-loaded liposomes provide a strategy for immunoadjuvant-enhanced cancer photothermal immunotherapy.
Collapse
Affiliation(s)
- Mei-Ting Niu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhu Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xinhua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Qian-Xiao Huang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Zhenlin Zhong
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
6
|
Çakır Gündoğdu A, Kar F, Özbayer C. Investigation of the Gastroprotective Effect of Betaine-Homocysteine Homeostasis on Oxidative Stress, Inflammation and Apoptosis in Ethanol-Induced Ulcer Model. J INVEST SURG 2022; 35:1806-1817. [PMID: 36154440 DOI: 10.1080/08941939.2022.2126566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Background: There is a growing interest in the use of natural compounds for the treatment of gastric ulcers. The multifunctional roles of betaine in various diseases make this natural substance a favorable pre-drug for ulcer treatment. This study aims to determine the competence of betaine in gastroprotection against ethanol-induced damage and to explore underlying mechanisms considering its effects on liver and kidney activity and blood parameters.Methods: Wistar albino rats were orally treated with vehicle (distilled water) or betaine (250 mg/kg) for twenty-one days and then ulcer formation was induced by ingestion of 75% ethanol. Gastric mucosal damage was evaluated by gross examination and histopathological analysis. Homocysteine levels, lipid peroxidation, total antioxidant status (TAS), total oxidant status (TAS), antioxidant enzymes and pro-inflammatory and anti-inflammatory cytokines levels were assessed by enzyme-linked immunosorbent assay (ELISA) or immunohistochemistry. Furthermore, routine biochemical tests were performed and hematological parameters were analyzed.Results: Betaine ameliorated any gastric mucosal damage and reduced homocysteine levels significantly. The TOS and malondialdehyde (MDA) levels were decreased while the TAS, glutathione (GSH) levels and catalase (CAT) activity were increased upon the betaine treatment. Betaine reduced apoptosis by regulating Bax and Bcl-2 levels, however, it did not alter inflammatory mediators. Additionally, betaine improved serum potassium (K+) and blood urea nitrogen (BUN) levels, whereas it increased alanine aminotransferase (ALT) levels and impaired hematological parameters.Conclusions: Altogether, these data illustrated that betaine exhibits a gastroprotective effect against ulcers through the homocysteine pathway by modulating oxidative stress in the gastric tissue; however, its systemic effects should not be ignored.
Collapse
Affiliation(s)
- Ayşe Çakır Gündoğdu
- Department of Histology and Embryology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| | - Fatih Kar
- Department of Basic Sciences, Faculty of Engineering and Natural Sciences, Kütahya Health Sciences University, Kütahya, Turkey
| | - Cansu Özbayer
- Department of Medical Biology, Faculty of Medicine, Kütahya Health Sciences University, Kütahya, Turkey
| |
Collapse
|
7
|
Ishiguro S, Roth M, Welti R, Loyd M, Thakkar R, Phillips M, Robben N, Upreti D, Nakashima A, Suzuki K, Comer J, Tamura M. A Water Extract from Chlorella sorokiniana Cell Walls Stimulates Growth of Bone Marrow Cells and Splenocytes. Nutrients 2022; 14:nu14142901. [PMID: 35889858 PMCID: PMC9322350 DOI: 10.3390/nu14142901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/01/2023] Open
Abstract
A water extract derived from the isolated cell walls of Chlorella sorokiniana (C. sorokiniana, Chlorella water extract, CWE) was analyzed for the presence of lipopolysaccharide (LPS)-related material via the Limulus amebocyte lysate (LAL) assay and evaluated for its growth stimulation effect on the bone marrow cells and splenocytes in vitro cell cultures. The extract contained low levels of LPS-related material, and a mass spectrum suggested that the extract contained many components, including a low level of a lipid A precursor, a compound known as lipid X, which is known to elicit a positive response in the LAL assay. Treatment with the CWE dose- and time-dependently stimulated the growth of mouse bone marrow cells (BMCs) and splenocytes (SPLs). Treatment with the CWE also increased specific BMC subpopulations, including antigen-presenting cells (CD19+ B cells, 33D1+ dendritic cells and CD68+ macrophages), and CD4+ and CD8+ T cells, but decreased the number of LY6G+ granulocytes. Treatment with the CWE also increased cytokine mRNA associated with T cell activation, including TNFα, IFNγ, and granzyme B in human lymphoblasts. The present study indicates that the cell wall fraction of C.sorokiniana contains an LPS-like material and suggests a candidate source for the bioactivity that stimulates growth of both innate and adaptive immune cells.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Mary Roth
- Division of Biology, Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, USA; (M.R.); (R.W.)
| | - Ruth Welti
- Division of Biology, Kansas Lipidomics Research Center, Kansas State University, Manhattan, KS 66506, USA; (M.R.); (R.W.)
| | - Mayme Loyd
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Ravindra Thakkar
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Morgan Phillips
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Nicole Robben
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Deepa Upreti
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Ayaka Nakashima
- Euglena Co., Ltd., Minato-ku, Tokyo 108-0014, Japan; (A.N.); (K.S.)
| | - Kengo Suzuki
- Euglena Co., Ltd., Minato-ku, Tokyo 108-0014, Japan; (A.N.); (K.S.)
| | - Jeffrey Comer
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
| | - Masaaki Tamura
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA; (S.I.); (M.L.); (R.T.); (M.P.); (N.R.); (D.U.); (J.C.)
- Correspondence: ; Tel.: +1-(785)-532-4825; Fax: +1-(785)-532-4557
| |
Collapse
|