1
|
Paterson S, Majchrzak M, Alexandru D, Di Bella S, Fernández-Tomé S, Arranz E, de la Fuente MA, Gómez-Cortés P, Hernández-Ledesma B. Impact of the biomass pretreatment and simulated gastrointestinal digestion on the digestibility and antioxidant activity of microalgae Chlorella vulgaris and Tetraselmis chuii. Food Chem 2024; 453:139686. [PMID: 38788650 DOI: 10.1016/j.foodchem.2024.139686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Chlorella vulgaris and Tetraselmis chuii are two microalgae species already marketed because of their richness in high-value and health-beneficial compounds. Previous studies have demonstrated the biological properties of compounds isolated from both microalgae, although data are not yet available on the impact that pre-treatment and gastrointestinal digestion could exert on these properties. The aim of the present study was to analyze the impact of the biomass pre-treatment (freeze/thaw cycles plus ultrasounds) and simulated gastrointestinal digestion in the bioaccessibility and in vitro antioxidant activity (ABTS, ORAC, Q-FRAP, Q-DPPH) of the released digests. The cell wall from microalgae were susceptible to the pre-treatment and the action of saliva and gastric enzymes, releasing bioactive peptides and phenolic compounds that contributed to the potent antioxidant activity of digests through their radical scavenging and iron reduction capacities. Our findings suggest the potential of these microalgae against oxidative stress-associated diseases at both, intestinal and systemic level.
Collapse
Affiliation(s)
- Samuel Paterson
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Marta Majchrzak
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Denisa Alexandru
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Serena Di Bella
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Samuel Fernández-Tomé
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
| | - Elena Arranz
- Department of Nutrition and Food Science, Faculty of Pharmacy, Complutense University of Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; Departmental Section of Food Science. Faculty of Science, Autonomous University of Madrid (UAM) and Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Miguel Angel de la Fuente
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
| |
Collapse
|
2
|
Grácio M, Ferreira J, Steinrücken P, Kleinegris DMM, Sousa I, Nunes MC, Raymundo A. The Volatile Composition and the Potential Health Benefits of Different Microalgae Strains. Foods 2024; 13:2174. [PMID: 39063258 PMCID: PMC11276236 DOI: 10.3390/foods13142174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The use of microalgae as a food ingredient has been gaining attention in recent years due to its nutritional benefits. The main goals of this study were to (i) assess the nutritional potential of Chlorella vulgaris, Tetraselmis chuii, Microchloropsis gaditana, and Phaeodactylum tricornutum; (ii) evaluate their bioactive properties (antioxidant activity, total phenolic content, and α-amylase inhibitory activity) and (iii) assess the main volatile compounds composition. The protein content was considerably high (32-44 mg/100 g dw) for all the microalgae strains. The DPPH scavenging potential range was 14-25 mg Trolox/100 g dw (highest for T. chuii) and the ferric reducing power ability range was 13-67 µmol Trolox/dw (higher for T. chuii). The total phenolic content range was 2-7 mg of gallic acid equivalents/g dw, for M. gaditana and T. chuii, respectively, which was mainly due to the presence of catechin (1-9 µg/g dw), epicatechin (3-29 µg/g dw), and vanillic acid (1-14 µg/g dw). The ɑ-amylase inhibitory potential range was 26-42%. C. vulgaris was richer in chlorophyll a (18 mg/g dw), whilst T. chuii was particularly rich in chlorophyll b (29 mg/g dw). P. tricornutum showed the highest carotenoid content (4 mg/g dw). Aldehydes and alkanes were the major compounds identified in M. gaditana, whereas alcohols and N-based compounds existed in higher amounts in P. tricornutum. T. chuii and C. vulgaris were enriched in ketones and alkenes. This study's novelty lies in its comprehensive and integrative analysis of the nutritional, bioactive, and volatile properties of four distinct microalgae strains. By providing detailed comparisons and highlighting potential applications in functional foods, it offers a unique contribution to the field of microalgae research and its practical application in the food industry. This multifaceted approach sets it apart from existing studies, offering new insights and opportunities for leveraging microalgae as valuable food ingredients.
Collapse
Affiliation(s)
- Madalena Grácio
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| | - Joana Ferreira
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| | - Pia Steinrücken
- NORCE Norwegian Research Centre, Thormøhlensgate 53, 5006 Bergen, Norway; (P.S.); (D.M.M.K.)
| | | | - Isabel Sousa
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| | - M. Cristiana Nunes
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| | - Anabela Raymundo
- LEAF—Linking Landscape, Environment, Agriculture and Food—Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal; (M.G.); (I.S.); (M.C.N.); (A.R.)
| |
Collapse
|
3
|
Kim DK, Rajan P, Cuong DM, Choi JH, Yoon TH, Go GM, Lee JW, Noh SW, Choi HK, Cho SK. Melosira nummuloides Ethanol Extract Ameliorates Alcohol-Induced Liver Injury by Affecting Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8476-8490. [PMID: 38588403 DOI: 10.1021/acs.jafc.3c06261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Melosira nummuloides is a microalga with a nutritionally favorable polyunsaturated fatty acid profile. In the present study, M. nummuloides ethanol extract (MNE) was administered to chronic-binge alcohol-fed mice and alcohol-treated HepG2 cells, and its hepatoprotective effects and underlying mechanisms were investigated. MNE administration reduced triglyceride (TG), total cholesterol (T-CHO), and liver injury markers, including aspartate transaminase (AST) and alanine transaminase (ALT), in the serum of chronic-binge alcohol-fed mice. However, MNE administration increased the levels of phosphorylated adenosine monophosphate-activated protein kinase (P-AMPK/AMPK) and PPARα, which was accompanied by a decrease in SREBP-1; this indicates that MNE can inhibit adipogenesis and improve fatty acid oxidation. Moreover, MNE administration upregulated the expression of antioxidant enzymes, including SOD, NAD(P)H quinone dehydrogenase 1, and GPX, and ameliorated alcohol-induced inflammation by repressing the Akt/NFκB/COX-2 pathway. Metabolomic analysis revealed that MNE treatment modulated many lipid metabolites in alcohol-treated HepG2 cells. Our study findings provide evidence for the efficacy and mechanisms of MNE in ameliorating alcohol-induced liver injury.
Collapse
Affiliation(s)
- Dae Kyeong Kim
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Priyanka Rajan
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
| | - Do Manh Cuong
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae Ho Choi
- Inflamm-Aging Translational Research Center, Ajou University Medical Center, Suwon 16499, Republic of Korea
| | - Tae Hyeon Yoon
- College of Applied Life Sciences, SARI, Jeju National University, Jeju 63243, Republic of Korea
| | - Gyung Min Go
- JDKBIO lnc., Jeju-si, Jeju 63023, Republic of Korea
| | - Ji Won Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soon-Wook Noh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Somi Kim Cho
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Subtropical/Tropical Organism Gene Bank, Jeju National University, Jeju 63243, Republic of Korea
- College of Applied Life Sciences, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
4
|
Susanto E, Mustajab RM, Kamil M, Atho'illah MF, Riyadi PH, Kurniasih RA, Pangestuti R, Prasetyo DYB. Unlocking Nature's Potential: A Comparative Study of Bioactive Compounds Extracted from Tropical Microalgae. Mol Biotechnol 2024:10.1007/s12033-024-01080-2. [PMID: 38300455 DOI: 10.1007/s12033-024-01080-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024]
Abstract
To promote the use of marine microalgae for nutraceuticals, we aimed to characterize extracts of Nannochloropsis oculata, Porphyridium cruentum, and Skeletonema costatum, all of which harbor numerous bioactive substances. Chlorophylls and carotenoids were identified as the primary pigments in N. oculata and S. costatum extracts. Furthermore, the total phenolic and total flavonoid contents in the three microalgae ranged 20.32-21.96 mg GAE/g and 0.3-2.1 mg QE/g, respectively. Notably, the extract of N. oculata exhibited the most significant radical scavenging activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays, with flavonoids and pigments identified as the main contributors to antioxidant activities. Our results revealed variations in metabolite profiles among the microalgal extracts: N. oculata extract (43 types), P. cruentum (13 types), and S. costatum (21 types). Hexadecanamide emerged as the major metabolite detected in all microalgae. Collectively, the results of the present study may open new avenues of microalgae for various applications.
Collapse
Affiliation(s)
- Eko Susanto
- Department of Fisheries Product Technology, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Jawa Tengah, 50275, Indonesia.
| | - Rabbani Mahir Mustajab
- Department of Fisheries Product Technology, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Jawa Tengah, 50275, Indonesia
| | - Mustofa Kamil
- Department of Fisheries Product Technology, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Jawa Tengah, 50275, Indonesia
| | - Mochammad Fitri Atho'illah
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Jl. Veteran, Malang, Jawa Timur, 65145, Indonesia
| | - Putut Har Riyadi
- Department of Fisheries Product Technology, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Jawa Tengah, 50275, Indonesia
| | - Retno Ayu Kurniasih
- Department of Fisheries Product Technology, Faculty of Fisheries and Marine Science, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Jawa Tengah, 50275, Indonesia
| | - Ratih Pangestuti
- Research Centre for Food Processing and Technology, National Research and Innovation Agency, Playen Gunung Kidul Yogyakarta, Yogyakarta, 55861, Indonesia
| | - Dwi Yanuar Budi Prasetyo
- Study Program of Fisheries Sciences, Nahdlatul Ulama University of Purwokerto, Jl. Sultan Agung, Banyumas, Jawa Tengah, 53144, Indonesia
| |
Collapse
|
5
|
Ge X, Liu T, Chen Z, Zhang J, Yin X, Huang Z, Chen L, Zhao C, Shao R, Xu W. Fagopyrum tataricum ethanol extract ameliorates symptoms of hyperglycemia by regulating gut microbiota in type 2 diabetes mellitus mice. Food Funct 2023; 14:8487-8503. [PMID: 37655471 DOI: 10.1039/d3fo02385k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is typically accompanied by sudden weight loss, dyslipidemia-related indicators, decreased insulin sensitivity, and altered gut microbial communities. Fagopyrum tataricum possesses many biological activities, such as antioxidant, hypolipidemic, and hypotensive activities. However, only a few studies have attempted to elucidate the regulatory effects of F. tataricum ethanol extract (FTE) on intestinal microbial communities and its potential relationships with T2DM. In this study, we established a T2DM mouse model and investigated the regulatory effects of FTE on hyperglycemia symptoms and intestinal microbial communities. FTE intervention significantly improved the levels of fasting blood glucose, the area under the curve of oral glucose tolerance test (OGTT), and glycosylated serum protein, as well as pancreas islet function correlation index. In addition, FTE effectively improved hepatic and cecum injuries and insulin secretion due to T2DM. It was also revealed that the potential hypoglycemic mechanism of FTE was involved in the regulation of protein kinase B (AKT-1) and glucose transporter 2 (GLUT-2). Furthermore, compared with the Model group, the FTE-H intervention exhibited a significantly decreased ratio of Firmicutes to Bacteroidetes at the phylum level, reduced relative abundance of pernicious bacteria at the genus level, such as Desulfovibrio, Oscillibacter, Blautia, Parabacteroides, and Erysipelatoclostridium, and ameliorated inflammatory response and insulin resistance. Moreover, the correlation between gut microbiota and hypoglycemic indicators was predicted. The results showed that Lachnoclostridium, Lactobacillus, Oscillibacter, Bilophila, and Roseburia have the potential to be used as bacterial markers for T2DM. In conclusion, our research showed that FTE alleviates hyperglycemia symptoms by regulating the expression of AKT-1 and GLUT-2, as well as intestinal microbial communities in T2DM mice.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, Jiangsu 224051, China
| | - Zhuo Chen
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Jiawei Zhang
- School of Chemistry & Chemical Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Xuemei Yin
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Zirui Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
6
|
Tamel Selvan K, Goon JA, Makpol S, Tan JK. Therapeutic Potentials of Microalgae and Their Bioactive Compounds on Diabetes Mellitus. Mar Drugs 2023; 21:462. [PMID: 37755075 PMCID: PMC10532649 DOI: 10.3390/md21090462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetes mellitus is a metabolic disorder characterized by hyperglycemia due to impaired insulin secretion, insulin resistance, or both. Oxidative stress and chronic low-grade inflammation play crucial roles in the pathophysiology of diabetes mellitus. There has been a growing interest in applying natural products to improve metabolic derangements without the side effects of anti-diabetic drugs. Microalgae biomass or extract and their bioactive compounds have been applied as nutraceuticals or additives in food products and health supplements. Several studies have demonstrated the therapeutic effects of microalgae and their bioactive compounds in improving insulin sensitivity attributed to their antioxidant, anti-inflammatory, and pancreatic β-cell protective properties. However, a review summarizing the progression in this topic is lacking despite the increasing number of studies reporting their anti-diabetic potential. In this review, we gathered the findings from in vitro, in vivo, and human studies to discuss the effects of microalgae and their bioactive compounds on diabetes mellitus and the mechanisms involved. Additionally, we discuss the limitations and future perspectives of developing microalgae-based compounds as a health supplement for diabetes mellitus. In conclusion, microalgae-based supplementation has the potential to improve diabetes mellitus and be applied in more clinical studies in the future.
Collapse
Affiliation(s)
| | | | | | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Ya’acob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
7
|
Bioactivity and Digestibility of Microalgae Tetraselmis sp. and Nannochloropsis sp. as Basis of Their Potential as Novel Functional Foods. Nutrients 2023; 15:nu15020477. [PMID: 36678348 PMCID: PMC9861193 DOI: 10.3390/nu15020477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
It is estimated that by 2050, the world's population will exceed 10 billion people, which will lead to a deterioration in global food security. To avoid aggravating this problem, FAO and WHO have recommended dietary changes to reduce the intake of animal calories and increase the consumption of sustainable, nutrient-rich, and calorie-efficient products. Moreover, due to the worldwide rising incidence of non-communicable diseases and the demonstrated impact of diet on the risk of these disorders, the current established food pattern is focused on the consumption of foods that have functionality for health. Among promising sources of functional foods, microalgae are gaining worldwide attention because of their richness in high-value compounds with potential health benefits. However, despite the great opportunities to exploit microalgae in functional food industry, their use remains limited by challenges related to species diversity and variations in cultivation factors, changes in functional composition during extraction procedures, and limited evidence on the safety and bioavailability of microalgae bioactives. The aim of this review is to provide an updated and comprehensive discussion on the nutritional value, biological effects, and digestibility of two microalgae genera, Tetraselmis and Nannochloropsis, as basis of their potential as ingredients for the development of functional foods.
Collapse
|
8
|
Improvement in the Sequential Extraction of Phycobiliproteins from Arthrospira platensis Using Green Technologies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111896. [PMID: 36431030 PMCID: PMC9692409 DOI: 10.3390/life12111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Arthrospira platensis (commercially known as Spirulina) is an excellent source of phycobiliproteins, especially C-phycocyanin. Phycobiliproteins are significant bioactive compounds with useful biological applications. The extraction process plays a significant role in downstream microalga production and utilisation. The important pigments found in A. platensis include chlorophyll and carotenoids as nonpolar pigments and phycobiliproteins as polar pigments. Supercritical fluid extraction (SFE) as a green extraction technology for the high-value metabolites of microalgae has potential for trends in food and human health. The nonpolar bioactive compounds, chlorophyll and carotenoids of A. platensis, were primarily separated using supercritical carbon dioxide (SC-CO2) solvent-free fluid extraction pressure; the temperature and ethanol as cosolvent conditions were compared. The residue from the A. platensis cells was subjected to phycobiliprotein extraction. The phosphate and water extraction of A. platensis SFE residue were compared to evaluate phycobiliprotein extraction. The SFE results exhibited higher pressure (350 bar) and temperature extraction (50 °C) with ethanol-free extraction and increased nonpolar pigment. Phycobiliprotein yield was obtained from A. platensis SFE residue by ethanol-free buffer extraction as a suitable process with antioxidant properties. The C-phycocyanin was isolated and enhanced to 0.7 purity as food grade. This developed method can be used as a guideline and applied as a sustainable process for important pigment extraction from Arthrospira microalgae.
Collapse
|
9
|
Garcia-Parra J, Fuentes-Grünewald C, Gonzalez D. Therapeutic Potential of Microalgae-Derived Bioactive Metabolites Is Influenced by Different Large-Scale Culture Strategies. Mar Drugs 2022; 20:627. [PMID: 36286451 PMCID: PMC9605503 DOI: 10.3390/md20100627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
Microalgae have been identified as one of the most promising sources of novel bioactive compounds for biomedical applications, the food industry, and cosmetics. In the last decade, several biotechnological developments have facilitated the identification of a growing number of compounds as well as the study of optimal microalgae culture conditions for the production of biomass enriched in specific molecules of interest. In this study, two common commercial marine microalgae (Nannochloropsis oculata and Porphyridium purpureum) were cultured in standard and nutrient-stressed conditions and the obtained biomass extracts were assessed for their potential to inhibit cancer cell proliferation and migration as well as their antioxidant activity. Results from viability in 2D and 3D cancer cell models showed an enhancement of the antitumour activity of P. purpureum in the 3D model compared to 2D, together with a greater capacity to reduce the migration capacity of cancer cells with the biomass from nutrient-stressed conditions, whereas the antioxidant activity of N. oculata decreased when exposed to nutrient-stressed conditions. To date, this is one of the few studies that proves that controlled changes in large-scale culturing conditions such as nutrient depletion have a relevant impact in the bioactivity of the biomass on cancer cells.
Collapse
Affiliation(s)
- Jezabel Garcia-Parra
- Faculty of Medicine, Health and Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Claudio Fuentes-Grünewald
- Faculty of Science and Engineering, Swansea University, Singleton Park, Swansea SA2 8PP, UK
- Beacon Development, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Deyarina Gonzalez
- Faculty of Medicine, Health and Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
10
|
Zhou L, Li K, Duan X, Hill D, Barrow C, Dunshea F, Martin G, Suleria H. Bioactive compounds in microalgae and their potential health benefits. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|