1
|
Salomatina OV, Kornienko TE, Zakharenko AL, Komarova NI, Achara C, Reynisson J, Salakhutdinov NF, Lavrik OI, Volcho KP. New Dual Inhibitors of Tyrosyl-DNA Phosphodiesterase 1 and 2 Based on Deoxycholic Acid: Design, Synthesis, Cytotoxicity, and Molecular Modeling. Molecules 2024; 29:581. [PMID: 38338326 PMCID: PMC10856758 DOI: 10.3390/molecules29030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Deoxycholic acid derivatives containing various heterocyclic functional groups at C-3 on the steroid scaffold were designed and synthesized as promising dual tyrosyl-DNA phosphodiesterase 1 and 2 (TDP1 and TDP2) inhibitors, which are potential targets to potentiate topoisomerase poison antitumor therapy. The methyl esters of DCA derivatives with benzothiazole or benzimidazole moieties at C-3 demonstrated promising inhibitory activity in vitro against TDP1 with IC50 values in the submicromolar range. Furthermore, methyl esters 4d-e, as well as their acid counterparts 3d-e, inhibited the phosphodiesterase activity of both TDP1 and TDP2. The combinations of compounds 3d-e and 4d-e with low-toxic concentrations of antitumor drugs topotecan and etoposide showed significantly greater cytotoxicity than the compounds alone. The docking of the derivatives into the binding sites of TDP1 and TDP2 predicted plausible binding modes of the DCA derivatives.
Collapse
Affiliation(s)
- Oksana V. Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Tatyana E. Kornienko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Nina I. Komarova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Chigozie Achara
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (C.A.); (J.R.)
| | - Jóhannes Reynisson
- School of Pharmacy and Bioengineering, Keele University, Hornbeam Building, Newcastle-under-Lyme, Staffordshire ST5 5BG, UK; (C.A.); (J.R.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 8, Lavrent’ev Ave., Novosibirsk 630090, Russia; (T.E.K.); (A.L.Z.); (O.I.L.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, 9, Lavrent’ev Ave., Novosibirsk 630090, Russia; (O.V.S.); (N.I.K.); (N.F.S.)
| |
Collapse
|
2
|
Zakharenko AL, Dyrkheeva NS, Luzina OA, Filimonov AS, Mozhaitsev ES, Malakhova AA, Medvedev SP, Zakian SM, Salakhutdinov NF, Lavrik OI. Usnic Acid Derivatives Inhibit DNA Repair Enzymes Tyrosyl-DNA Phosphodiesterases 1 and 2 and Act as Potential Anticancer Agents. Genes (Basel) 2023; 14:1931. [PMID: 37895279 PMCID: PMC10606488 DOI: 10.3390/genes14101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 and 2 (Tdp1 and Tdp2) are DNA repair enzymes that repair DNA damage caused by various agents, including anticancer drugs. Thus, these enzymes resist anticancer therapy and could be the reason for resistance to such widely used drugs such as topotecan and etoposide. In the present work, we found compounds capable of inhibiting both enzymes among derivatives of (-)-usnic acid. Both (+)- and (-)-enantiomers of compounds act equally effectively against Tdp1 with IC50 values in the range of 0.02-0.2 μM; only (-)-enantiomers inhibited Tdp2 with IC50 values in the range of 6-9 μM. Surprisingly, the compounds protect HEK293FT wild type cells from the cytotoxic effect of etoposide (CC50 3.0-3.9 μM in the presence of compounds and 2.4 μM the presence of DMSO) but potentiate it against Tdp2 knockout cells (CC50 1.2-1.6 μM in the presence of compounds against 2.3 μM in the presence of DMSO). We assume that the sensitizing effect of the compounds in the absence of Tdp2 is associated with the effective inhibition of Tdp1, which could take over the functions of Tdp2.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| | - Nadezhda S. Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Aleksandr S. Filimonov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Evgenii S. Mozhaitsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Anastasia A. Malakhova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Sergey P. Medvedev
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Suren M. Zakian
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (A.A.M.); (S.P.M.); (S.M.Z.)
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (O.A.L.); (A.S.F.); (E.S.M.); (N.F.S.)
| | - Olga I. Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Akademika Lavrentieva Ave., 630090 Novosibirsk, Russia; (N.S.D.); (O.I.L.)
| |
Collapse
|
3
|
Yang H, Qin C, Wu M, Wang FT, Wang W, Agama K, Pommier Y, Hu DX, An LK. Synthesis and Biological Activities of 11- and 12-Substituted Benzophenanthridinone Derivatives as DNA Topoisomerase IB and Tyrosyl-DNA Phosphodiesterase 1 Inhibitors. ChemMedChem 2023; 18:e202200593. [PMID: 36932053 PMCID: PMC10233710 DOI: 10.1002/cmdc.202200593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/06/2023] [Indexed: 03/19/2023]
Abstract
Herein, a series of 11- or 12-substituted benzophenanthridinone derivatives was designed and synthesized for the discovery of dual topoisomerase IB (TOP1) and tyrosyl-DNA phosphodiesterase 1 (TDP1) inhibitors. Enzyme-based assays indicated that two compounds 12 and 38 showed high TOP1 inhibitory potency (+++), and four compounds 35, 37, 39 and 43 showed good TDP1 inhibition with IC50 values ranging from 10 to 18 μM. 38 could induce cellular TOP1cc formation, resulting in the highest cytotoxicity against HCT-116 cells (0.25 μM). The most potent TDP1 inhibitor 43 (10 μM) could induce cellular TDP1cc formation and enhance topotecan-induced DNA damage and showed strong synergistic cytotoxicity with topotecan in both MCF-7 and MCF-7/TDP1 cells.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, P. R. China
| | - Chao Qin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - De-Xuan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
4
|
Zakharenko AL, Luzina OA, Chepanova AA, Dyrkheeva NS, Salakhutdinov NF, Lavrik OI. Natural Products and Their Derivatives as Inhibitors of the DNA Repair Enzyme Tyrosyl-DNA Phosphodiesterase 1. Int J Mol Sci 2023; 24:5781. [PMID: 36982848 PMCID: PMC10051138 DOI: 10.3390/ijms24065781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/22/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an important repair enzyme that removes various covalent adducts from the 3' end of DNA. Particularly, covalent complexes of topoisomerase 1 (TOP1) with DNA stabilized by DNA damage or by various chemical agents are an examples of such adducts. Anticancer drugs such as the TOP1 poisons topotecan and irinotecan are responsible for the stabilization of these complexes. TDP1 neutralizes the effect of these anticancer drugs, eliminating the DNA adducts. Therefore, the inhibition of TDP1 can sensitize tumor cells to the action of TOP1 poisons. This review contains information about methods for determining the TDP1 activity, as well as describing the inhibitors of these enzyme derivatives of natural biologically active substances, such as aminoglycosides, nucleosides, polyphenolic compounds, and terpenoids. Data on the efficiency of combined inhibition of TOP1 and TDP1 in vitro and in vivo are presented.
Collapse
Affiliation(s)
- Alexandra L. Zakharenko
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga A. Luzina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Arina A. Chepanova
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nadezhda S. Dyrkheeva
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Nariman F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| | - Olga I. Lavrik
- Novosibirsk Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8, Akademika Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Moiseeva N, Eroshenko D, Laletina L, Rybalkina E, Susova O, Karamysheva A, Tolmacheva I, Nazarov M, Grishko V. The Molecular Mechanisms of Oleanane Aldehyde-β-enone Cytotoxicity against Doxorubicin-Resistant Cancer Cells. BIOLOGY 2023; 12:biology12030415. [PMID: 36979107 PMCID: PMC10045559 DOI: 10.3390/biology12030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Oleanane aldehyde-β-enone (OA), being the semi-synthetic derivative of the triterpenoid betulin, effectively inhibits the proliferation of HBL-100 and K562 cancer cells (IC50 0.47–0.53 µM), as well as the proliferation of their resistant subclones with high P-gp expression HBL-100/Dox, K562/i-S9 and K562/i-S9_Dox (IC50 0.45−1.24 µM). A molecular docking study, rhodamine efflux test, synergistic test with Dox, and ABC transporter gene expression were used to investigate the ability of OA to act as a P-gp substrate or inhibitor against Dox-resistant cells. We noted a trend toward a decrease in ABCB1, ABCC1 and ABCG2 expression in HBL-100 cells treated with OA. The in silico and in vitro methods suggested that OA is neither a direct inhibitor nor a competitive substrate of P-gp in overexpressing P-gp cancer cells. Thus, OA is able to overcome cellular resistance and can accumulate in Dox-resistant cells to realize toxic effects. The set of experiments suggested that OA toxic action can be attributed to activating intrinsic/extrinsic or only intrinsic apoptosis pathways in Dox-sensitive and Dox-resistant cancer cells, respectively. The cytotoxicity of OA in resistant cells is likely mediated by a mitochondrial cell death pathway, as demonstrated by positive staining with Annexin V–FITC, an increasing number of cells in the subG0/G1 phase, reactive oxygen species generation, mitochondrial dysfunction, cytochrome c migration and caspases-9,-6 activation.
Collapse
Affiliation(s)
- Natalia Moiseeva
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Daria Eroshenko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Lidia Laletina
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Ekaterina Rybalkina
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Olga Susova
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Aida Karamysheva
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Irina Tolmacheva
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Mikhail Nazarov
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Victoria Grishko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
- Correspondence:
| |
Collapse
|
6
|
Dyrkheeva NS, Malakhova AA, Zakharenko AL, Okorokova LS, Shtokalo DN, Pavlova SV, Medvedev SP, Zakian SM, Nushtaeva AA, Tupikin AE, Kabilov MR, Khodyreva SN, Luzina OA, Salakhutdinov NF, Lavrik OI. Transcriptomic Analysis of CRISPR/Cas9-Mediated PARP1-Knockout Cells under the Influence of Topotecan and TDP1 Inhibitor. Int J Mol Sci 2023; 24:ijms24065148. [PMID: 36982223 PMCID: PMC10049738 DOI: 10.3390/ijms24065148] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Topoisomerase 1 (TOP1) is an enzyme that regulates DNA topology and is essential for replication, recombination, and other processes. The normal TOP1 catalytic cycle involves the formation of a short-lived covalent complex with the 3' end of DNA (TOP1 cleavage complex, TOP1cc), which can be stabilized, resulting in cell death. This fact substantiates the effectiveness of anticancer drugs-TOP1 poisons, such as topotecan, that block the relegation of DNA and fix TOP1cc. Tyrosyl-DNA phosphodiesterase 1 (TDP1) is able to eliminate TOP1cc. Thus, TDP1 interferes with the action of topotecan. Poly(ADP-ribose) polymerase 1 (PARP1) is a key regulator of many processes in the cell, such as maintaining the integrity of the genome, regulation of the cell cycle, cell death, and others. PARP1 also controls the repair of TOP1cc. We performed a transcriptomic analysis of wild type and PARP1 knockout HEK293A cells treated with topotecan and TDP1 inhibitor OL9-119 alone and in combination. The largest number of differentially expressed genes (DEGs, about 4000 both up- and down-regulated genes) was found in knockout cells. Topotecan and OL9-119 treatment elicited significantly fewer DEGs in WT cells and negligible DEGs in PARP1-KO cells. A significant part of the changes caused by PARP1-KO affected the synthesis and processing of proteins. Differences under the action of treatment with TOP1 or TDP1 inhibitors alone were found in the signaling pathways for the development of cancer, DNA repair, and the proteasome. The drug combination resulted in DEGs in the ribosome, proteasome, spliceosome, and oxidative phosphorylation pathways.
Collapse
Affiliation(s)
- Nadezhda S Dyrkheeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Anastasia A Malakhova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Aleksandra L Zakharenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | | | - Dmitriy N Shtokalo
- AcademGene LLC, 6 Lavrentyeva Ave., 630090 Novosibirsk, Russia
- A.P. Ershov Institute of Informatics Systems SB RAS, 6 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Sophia V Pavlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Sergey P Medvedev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Suren M Zakian
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
- Federal Research Centre Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Anna A Nushtaeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Alexey E Tupikin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Marsel R Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Svetlana N Khodyreva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Olga A Luzina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 Lavrentyeva Ave., 630090 Novosibirsk, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 8 Lavrentyeva Ave., 630090 Novosibirsk, Russia
- Department of Molecular Biology and Biotechnology, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
7
|
Zhao XZ, Wang W, Lountos GT, Tropea JE, Needle D, Pommier Y, Burke TR. Phosphonic acid-containing inhibitors of tyrosyl-DNA phosphodiesterase 1. Front Chem 2022; 10:910953. [PMID: 36051621 PMCID: PMC9424690 DOI: 10.3389/fchem.2022.910953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs stalled type I topoisomerase (TOP1)-DNA complexes by hydrolyzing the phosphodiester bond between the TOP1 Y723 residue and the 3′-phosphate of its DNA substrate. Although TDP1 antagonists could potentially reduce the dose of TOP1 inhibitors needed to achieve effective anticancer effects, the development of validated TDP1 inhibitors has proven to be challenging. This may, in part, be due to the open and extended nature of the TOP1 substrate binding region. We have previously reported imidazopyrazines and imidazopyridines that can inhibit TDP1 catalytic function in vitro. We solved the TDP1 crystal structures with bound inhibitors of this class and found that the dicarboxylic acid functionality within the N-(3,4-dicarboxyphenyl)-2-diphenylimidazo [1,2-a]pyridin-3-amine platform overlaps with aspects of phosphoryl substrate recognition. Yet phosphonic acids could potentially better-replicate cognate TOP1-DNA substrate binding interactions than carboxylic acids. As reported herein, we designed phosphonic acid-containing variants of our previously reported carboxylic acid-containing imidazopyrazine and imidazopyridine inhibitors and effected their synthesis using one-pot Groebke–Blackburn–Bienayme multicomponent reactions. We obtained crystal structures of TDP1 complexed with a subset of inhibitors. We discuss binding interactions of these inhibitors within the context of phosphate-containing substrate and carboxylic acid-based inhibitors. These compounds represent a new structural class of small molecule ligands that mimic aspects of the 3′-processed substrate that results from TDP1 catalysis.
Collapse
Affiliation(s)
- Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
- *Correspondence: Xue Zhi Zhao,
| | - Wenjie Wang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - George T. Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Joseph E. Tropea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Danielle Needle
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Terrence R. Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| |
Collapse
|
8
|
Yang H, Wang FT, Wu M, Wang W, Agama K, Pommier Y, An LK. Synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as tyrosyl-DNA phosphodiesterase 1 inhibitors and their anticancer activity. Bioorg Chem 2022; 123:105789. [PMID: 35429714 PMCID: PMC10557912 DOI: 10.1016/j.bioorg.2022.105789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/02/2022] [Accepted: 03/31/2022] [Indexed: 11/19/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that repairs DNA lesions caused by the trapping of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors have synergistic effect with TOP1 inhibitors in cancer cells and can overcome cancer cell resistance to TOP1 inhibitors. Here, we report the synthesis of 11-aminoalkoxy substituted benzophenanthridine derivatives as selective TDP1 inhibitors and show that six compounds 14, 16, 18, 20, 25 and 27 exhibit high TDP1 inhibition potency. The most potent TDP1 inhibitor 14 (IC50 = 1.7 ± 0.24 μM) induces cellular TDP1cc formation and shows synergistic effect with topotecan in four human cancer cell lines MCF-7, A549, H460 and HepG2.
Collapse
Affiliation(s)
- Hao Yang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Fang-Ting Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenjie Wang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Keli Agama
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States
| | - Lin-Kun An
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou 510006, China.
| |
Collapse
|