1
|
Ferreira ET, Barrochelo SC, de Melo SDP, Araujo T, Xavier ACC, Cechin I, da Silva GHR. Biofertilizers from wastewater treatment as a potential source of mineral nutrients for growth of amaranth plants. PLoS One 2023; 18:e0295624. [PMID: 38117795 PMCID: PMC10732379 DOI: 10.1371/journal.pone.0295624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/22/2023] [Indexed: 12/22/2023] Open
Abstract
Exploring alternative fertilizers is crucial in agriculture due to the cost and environmental impact of inorganic options. This study investigated the potential of sewage-derived biofertilizers on the growth and physiology of Amaranthus cruentus plants. Various treatments were compared, including control treatments with inorganic fertilizer and treatments with biofertilizers composed of microalgae, biosolids and reclaimed water. The following traits were investigated: photosynthetic pigments, gas exchange, growth, and leaf nutrient concentrations. The results showed that the concentrations of N, P, Cu, Fe Zn and Na nutrients, in the dry microalgae and biosolids, were quite high for the needs of the plants. The wet microalgae presented high concentration of Cu, Fe and Zn nutrients while reclaimed water contained high concentration of N, K, Ca and S. Na and Zn nutrients increased in the leaf of plants treated with dry microalgae and biosolid, respectively. At the beginning of the flowering phase, total chlorophyll and carotenoids contents were lower for plants grown with wet microalgae while for plants grown with higher doses of biosolid or reclaimed water total chlorophyll was increased, and carotenoids were not affected. Lower photosynthetic pigments under wet microalgae resulted in lower photosynthetic rates. On the other hand, amendments with dry microalgae and biosolid increased photosynthetic rates with the biosolid being the most effective. Higher applications of biosolid, wet and dry microalgae produced a considerable increase in shoot biomass of amaranth, with the dry microalgae being the most effective. Additionally, reclaimed water obtained after tertiary treatment of sewage with microalgae and biosolids applied alone showed promising effects on plant growth. Overall, these findings suggest that organic fertilizers derived from sewage treatment have the potential to enhance plant growth and contribute to sustainable agricultural practices.
Collapse
Affiliation(s)
- Elisa Teófilo Ferreira
- Department of Biological Sciences, Faculty of Sciences, UNESP – São Paulo State University, Bauru, Brazil
| | - Sarah Corrêa Barrochelo
- Department of Biological Sciences, Faculty of Sciences, UNESP – São Paulo State University, Bauru, Brazil
| | - Sarah de Paula de Melo
- Department of Biological Sciences, Faculty of Sciences, UNESP – São Paulo State University, Bauru, Brazil
| | - Thainá Araujo
- Department of Biological Sciences, Faculty of Sciences, UNESP – São Paulo State University, Bauru, Brazil
| | | | - Inês Cechin
- Department of Biological Sciences, Faculty of Sciences, UNESP – São Paulo State University, Bauru, Brazil
| | | |
Collapse
|
2
|
Ranilla LG, Zolla G, Afaray-Carazas A, Vera-Vega M, Huanuqueño H, Begazo-Gutiérrez H, Chirinos R, Pedreschi R, Shetty K. Integrated metabolite analysis and health-relevant in vitro functionality of white, red, and orange maize ( Zea mays L.) from the Peruvian Andean race Cabanita at different maturity stages. Front Nutr 2023; 10:1132228. [PMID: 36925963 PMCID: PMC10011086 DOI: 10.3389/fnut.2023.1132228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
The high maize (Zea mays L.) diversity in Peru has been recognized worldwide, but the investigation focused on its integral health-relevant and bioactive characterization is limited. Therefore, this research aimed at studying the variability of the primary and the secondary (free and dietary fiber-bound phenolic, and carotenoid compounds) metabolites of three maize types (white, red, and orange) from the Peruvian Andean race Cabanita at different maturity stages (milk-S1, dough-S2, and mature-S3) using targeted and untargeted methods. In addition, their antioxidant potential, and α-amylase and α-glucosidase inhibitory activities relevant for hyperglycemia management were investigated using in vitro models. Results revealed a high effect of the maize type and the maturity stage. All maize types had hydroxybenzoic and hydroxycinnamic acids in their free phenolic fractions, whereas major bound phenolic compounds were ferulic acid, ferulic acid derivatives, and p-coumaric acid. Flavonoids such as luteolin derivatives and anthocyanins were specific in the orange and red maize, respectively. The orange and red groups showed higher phenolic ranges (free + bound) (223.9-274.4 mg/100 g DW, 193.4- 229.8 mg/100 g DW for the orange and red maize, respectively) than the white maize (162.2-225.0 mg/100 g DW). Xanthophylls (lutein, zeaxanthin, neoxanthin, and a lutein isomer) were detected in all maize types. However, the orange maize showed the highest total carotenoid contents (3.19-5.87 μg/g DW). Most phenolic and carotenoid compounds decreased with kernel maturity in all cases. In relation to the primary metabolites, all maize types had similar fatty acid contents (linoleic acid > oleic acid > palmitic acid > α-linolenic acid > stearic acid) which increased with kernel development. Simple sugars, alcohols, amino acids, free fatty acids, organic acids, amines, and phytosterols declined along with grain maturity and were overall more abundant in white maize at S1. The in vitro functionality was similar among Cabanita maize types, but it decreased with the grain development, and showed a high correlation with the hydrophilic free phenolic fraction. Current results suggest that the nutraceutical characteristics of orange and white Cabanita maize are better at S1 and S2 stages while the red maize would be more beneficial at S3.
Collapse
Affiliation(s)
- Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú.,Escuela Profesional de Ingeniería de Industria Alimentaria, Departamento de Ciencias e Ingenierías Biológicas y Químicas, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, Arequipa, Perú
| | - Gastón Zolla
- Laboratorio de Fisiología Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Ana Afaray-Carazas
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
| | - Miguel Vera-Vega
- Laboratorio de Fisiología Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Hugo Huanuqueño
- Programa de Investigación y Proyección Social en Maíz, Facultad de Agronomía, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Huber Begazo-Gutiérrez
- Estación Experimental Agraria Arequipa, Instituto Nacional de Innovación Agraria (INIA), Arequipa, Perú
| | - Rosana Chirinos
- Instituto de Biotecnología, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.,Millennium Institute Center for Genome Regulation (CRG), Santiago, Chile
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|
3
|
Jahan S, Nesa M, Hossain ME, Rajbangshi JC, Hossain MS. In vivo and in silico evaluation of analgesic and hypoglycemic activities of Amaranthus blitum L. SOUTH AFRICAN JOURNAL OF BOTANY 2022; 150:565-575. [DOI: 10.1016/j.sajb.2022.07.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Valorization of Amaranth (Amaranthus cruentus) Grain Extracts for the Development of Alginate-Based Active Films. Molecules 2022; 27:molecules27185798. [PMID: 36144531 PMCID: PMC9505876 DOI: 10.3390/molecules27185798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
This research work investigates the development of alginate-based films incorporating phenolic compounds extracted from Amaranthus cruentus grain using different solvents. Alginate, glycerol, and amaranth grain phenolic compounds at various concentrations were used to produce the films. An experimental Central Composite Rotatable Design (CCRD) was used to evaluate the effect of these variables on different film’s properties, i.e., water vapor permeability, hydrophobicity, moisture content, solubility, thermal, mechanical, and optical properties. This study demonstrated that high phenolic compound content and antioxidant capacity were obtained from amaranth grain using ethanol as the extraction solvent. Alginate films incorporating amaranth phenolic compounds were successfully manufactured, and this study can be used to tailor the formulation of alginate films containing amaranth phenolic compounds, depending on their final food application. For example, less flexible but more resistant and water-soluble films can be produced by increasing the alginate concentration, which was confirmed by a Principal Component Analysis (PCA) and Partial Least Squares (PLS) analysis. This study showed that active alginate films with amaranth phenolic compounds can be tailored to be used as food packaging material with potential antioxidant activity.
Collapse
|