1
|
Wang F, Bao Y, Yang F, Yuan L, Han X, Huang Y, Wei Y, Zhang L, Yang Z, Yang D. Content Determination and Chemical Clustering Analysis of Tanshinone and Salvianolic Acid in Salvia spp. Metabolites 2024; 14:441. [PMID: 39195537 DOI: 10.3390/metabo14080441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Salvia miltiorrhiza is one of the famous traditional Chinese medicines for treating cardiovascular and cerebrovascular diseases. Tanshinone and phenolic acids are the main active compounds of Salvia miltiorrhiza, whereas the distribution patterns of the two kinds of components are still unclear among Salvia spp. In this work, high-performance liquid chromatography was applied to analyze the distribution patterns of major components in the roots and leaves of 58 Salvia spp. The results showed that the distribution patterns of tanshinone and phenolic acids in Salvia spp. varied significantly. Phenolic acid components such as rosmarinus acid, caffeic acid, and danshensu are widely distributed in the roots and leaves, and phenolic acids in the leaves of Salvia spp. are generally higher than that in roots. Tanshinones are mainly detected in the roots of Salvia przewalskii, Salvia trijuga, Salvia castanea, and Salvia yunnanensis. The content of major components of the different species varied significantly. The content of phenolic acids in most Salvia spp. generally followed the pattern of salvianolic acid B > rosmarinic acid > danshensu > caffeic acid both in the roots and leaves. Tanshinone IIA and cryptotanshinone were the main lipophilic components of Salvia spp. distributed in southwest China. A correlation between the distribution pattern of tanshinone and the genetic relationship of species was indicated in the work. This research systematically reveals the distribution patterns of tanshinone and phenolic acids in Salvia spp., providing a theoretical basis for the development and utilization of medicinal resources of Salvia.
Collapse
Affiliation(s)
- Feiyan Wang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yufeng Bao
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Furui Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lu Yuan
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinchun Han
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yanbo Huang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai 200120, China
| | - Yukun Wei
- Shanghai Botanical Garden/Shanghai Engineering Research Centre of Sustainable Plant Innovation, Shanghai 201600, China
| | - Lei Zhang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zongqi Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dongfeng Yang
- Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Engineering Research Centre for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd., Shaoxing 312075, China
| |
Collapse
|
2
|
Afrouz M, Ahmadi-Nouraldinvand F, Elias SG, Alebrahim MT, Tseng TM, Zahedian H. Green synthesis of spermine coated iron nanoparticles and its effect on biochemical properties of Rosmarinus officinalis. Sci Rep 2023; 13:775. [PMID: 36641537 PMCID: PMC9840625 DOI: 10.1038/s41598-023-27844-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
In this study, aqueous spinach extract was used for the green synthesis of iron nanoparticles. The surface of iron oxide nanoparticles was coated with spermine. The physicochemical properties of nanoparticles were investigated using UV-Vis, TGA, FTIR, VSM, TEM, and DLS. The results showed that the nanoparticles had a spherical structure. The surface charge of the Fe3O4-NPs increased from -3.2 to 18.42 (mV) after Fe3O4 coating by spermine. In order to investigate the effect of nanoparticles on physicochemical properties of rosemary under drought stress conditions, an experiment was carried out in a completely randomized design. The results showed that the amount of antioxidant enzymes and secondary metabolites increased significantly under drought stress. Moreover, the use of spermine-coated iron nanoparticles can be useful in increasing resistance to drought stress in plants by increasing the activity of some antioxidant enzymes and secondary metabolites. The biocompatibility of Nanoparticles in cell suspension was investigated. the ability of Fe3O4-SM NPs to interact with DNA and protect it against DNaseI and ultrasonic waves using agarose gel electrophoresis was studied. The ability of Fe3O4-SM to neutralize the negative charge of DNA and protect it against DNaseΙ and ultrasonic waves was confirmed using an agarose gel electrophoresis assay.
Collapse
Affiliation(s)
- Mehdi Afrouz
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | | | - Sabry G Elias
- Department of Crop and Soil Science, Oregon State University, Corvallis, USA
| | | | - Te Ming Tseng
- Department of Plant and Soil Science, Mississippi State University, Starkville, USA
| | - Hoda Zahedian
- Department of Deutsch-Sprachen, Volkshochschule, Gütersloh, Germany
| |
Collapse
|