1
|
Ohue-Kitano R, Masujima Y, Nishikawa S, Iwasa M, Nishitani Y, Kawakami H, Kuwahara H, Kimura I. 3-(4-Hydroxy-3-methoxyphenyl) propionic acid contributes to improved hepatic lipid metabolism via GPR41. Sci Rep 2023; 13:21246. [PMID: 38040866 PMCID: PMC10692101 DOI: 10.1038/s41598-023-48525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
3-(4-hydroxy-3-methoxyphenyl) propionic acid (HMPA) is a metabolite produced by the gut microbiota through the conversion of 4-hydroxy-3-methoxycinnamic acid (HMCA), which is a widely distributed hydroxycinnamic acid-derived metabolite found abundantly in plants. Several beneficial effects of HMPA have been suggested, such as antidiabetic properties, anticancer activities, and cognitive function improvement, in animal models and human studies. However, the intricate molecular mechanisms underlying the bioaccessibility and bioavailability profile following HMPA intake and the substantial modulation of metabolic homeostasis by HMPA require further elucidation. In this study, we effectively identified and characterized HMPA-specific GPR41 receptor, with greater affinity than HMCA. The activation of this receptor plays a crucial role in the anti-obesity effects and improvement of hepatic steatosis by stimulating the lipid catabolism pathway. For the improvement of metabolic disorders, our results provide insights into the development of functional foods, including HMPA, and preventive pharmaceuticals targeting GPR41.
Collapse
Affiliation(s)
- Ryuji Ohue-Kitano
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Laboratory of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Yuki Masujima
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shota Nishikawa
- Laboratory of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masayo Iwasa
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yosuke Nishitani
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima, 729-3102, Japan
| | - Hideaki Kawakami
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima, 729-3102, Japan
| | - Hiroshige Kuwahara
- Research Center, Maruzen Pharmaceuticals Co., Ltd., Fukuyama, Hiroshima, 729-3102, Japan
| | - Ikuo Kimura
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
- Laboratory of Molecular Endocrinology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Department of Applied Biological Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|
2
|
Pirvu LC, Pintilie L, Albulescu A, Stefaniu A, Neagu G. Anti-Proliferative Potential of Cynaroside and Orientin-In Silico (DYRK2) and In Vitro (U87 and Caco-2) Studies. Int J Mol Sci 2023; 24:16555. [PMID: 38068880 PMCID: PMC10705913 DOI: 10.3390/ijms242316555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
Luteolin derivates are plant compounds with multiple benefits for human health. Stability to heat and acid hydrolysis and high resistance to (auto)oxidation are other arguments for the laden interest in luteolin derivates today. The present study was designed to compare the in silico and in vitro anti-proliferative potential of two luteolin derivates, luteolin-7-O-glucoside/cynaroside (7-Lut) and luteolin-8-C-glucoside/orientin (8-Lut). In silico investigations were carried out on the molecular target, namely, the human dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) in association with its natural ligand, curcumin (PDB ID: 5ZTN), by CLC Drug Discovery Workbench v. 1.5.1. software and Molegro Virtual Docker (MVD) v. MVD 2019.7.0. software. In vitro studies were performed on two human tumor cell lines, glioblastoma (U87) and colon carcinoma (Caco-2), respectively. Altogether, docking studies have revealed 7-Lut and 8-Lut as effective inhibitors of DYRK2, even stronger than the native ligand curcumin; in vitro studies indicated the ability of both luteolin glucosides to inhibit the viability of both human tumor cell lines, up to 85% at 50 and 100 µg/mL, respectively; the most augmented cytotoxic and anti-proliferative effects were obtained for U87 exposed to 7-Lut (IC50 = 26.34 µg/mL). The results support further studies on cynaroside and orientin to create drug formulas targeting glioblastoma and colon carcinoma in humans.
Collapse
Affiliation(s)
- Lucia Camelia Pirvu
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical Pharmaceutical R&D—ICCF Bucharest, 112 Vitan, 031299 Bucharest, Romania;
| | - Lucia Pintilie
- Department of Synthesis of Bioactive Substances and Pharmaceutical Technologies, National Institute of Chemical Pharmaceutical R&D—ICCF Bucharest, 112 Vitan, 031299 Bucharest, Romania;
| | - Adrian Albulescu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical R&D—ICCF Bucharest, 112 Vitan, 031299 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, Molecular Virology Department, 285 Mihai Bravu, 030304 Bucharest, Romania
| | - Amalia Stefaniu
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical Pharmaceutical R&D—ICCF Bucharest, 112 Vitan, 031299 Bucharest, Romania;
| | - Georgeta Neagu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical R&D—ICCF Bucharest, 112 Vitan, 031299 Bucharest, Romania;
| |
Collapse
|
3
|
Donadio G, Bellone ML, Mensitieri F, Parisi V, Santoro V, Vitiello M, Dal Piaz F, De Tommasi N. Characterization of Health Beneficial Components in Discarded Leaves of Three Escarole ( Cichorium endivia L.) Cultivar and Study of Their Antioxidant and Anti-Inflammatory Activities. Antioxidants (Basel) 2023; 12:1402. [PMID: 37507941 PMCID: PMC10376668 DOI: 10.3390/antiox12071402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Plants of genus Cichorium (Asteraceae) can be used as vegetables with higher nutritional value and as medicinal plants. This genus has beneficial properties owing to the presence of a number of specialized metabolites such as alkaloids, sesquiterpene lactones, coumarins, unsaturated fatty acids, flavonoids, saponins, and tannins. Cichorium endivia L., known as escarole, has achieved a common food status due to its nutritionary value, bitter taste, and the presence of healthy components, and is eaten cooked or raw in salads. Presently, wastes derived from the horticultural crops supply chain are generated in very large amounts. Vegetable waste comprises the discarded leaves of food sources produced during collection, handling, transportation, and processing. The external leaves of Cichorium endivia L. are a horticultural crop that is discarded. In this work, the phytochemical profile, antioxidant, and anti-inflammatory activities of hydroalcoholic extract obtained from discarded leaves of three cultivars of escarole (C. endivia var. crispum 'Capriccio', C. endivia var. latifolium 'Performance' and 'Leonida') typical horticultural crop of the Campania region were investigated. In order to describe a metabolite profile of C. endivia cultivars, the extracts were analysed by HR/ESI/Qexactive/MS/MS and NMR. The careful analysis of the accurate masses, the ESI/MS spectra, and the 1H NMR chemical shifts allowed for the identification of small molecules belonging to phenolic, flavonoid, sesquiterpene, amino acids, and unsaturated fatty acid classes. In addition, the antioxidant potential of the extracts was evaluated using cell-free and cell-based assays, as well as their cytotoxic and anti-inflammatory activity. All the extracts showed similar radical-scavenging ability while significant differences between the three investigated cultivars emerged in the cell-based assays. The obtained data were ascribed to the content of polyphenols and sesquiterpenes in the extracts. Accordingly, C. endivia by-products can be deemed an interesting material for healthy product formulations.
Collapse
Affiliation(s)
- Giuliana Donadio
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
- Bioactiplant SRL, Via Dell'Ateneo Lucano 10, 85100 Potenza, PZ, Italy
| | - Maria Laura Bellone
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Francesca Mensitieri
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, Via Salvador Allende 43, 84081 Baronissi, SA, Italy
| | - Valentina Parisi
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Valentina Santoro
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, PA, Italy
| | - Maria Vitiello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 12, 56126 Pisa, PI, Italy
| | - Fabrizio Dal Piaz
- Dipartimento di Medicina, Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, Via Salvador Allende 43, 84081 Baronissi, SA, Italy
| | - Nunziatina De Tommasi
- Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|