1
|
Molitor M, Menge A, Mandel S, George S, Müller S, Knapp S, Hofmann B, Steinhilber D, Häfner AK. Unlocking the potential: unveiling tyrphostins with Michael-reactive cyanoacrylate motif as promising inhibitors of human 5-lipoxygenase. Pflugers Arch 2024; 476:1913-1928. [PMID: 39347835 PMCID: PMC11582101 DOI: 10.1007/s00424-024-03019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Human 5-lipoxygenase (5-LO) is the key enzyme in the biosynthesis of leukotrienes, mediators of the innate immune system that also play an important role in inflammatory diseases and cancer. In this study, we present compounds, containing a Michael-reactive cyanoacrylate moiety as potent inhibitors of 5-LO. Representatives of the tyrosine kinase inhibitor family called tyrphostins, structurally related to known 5-LO inhibitors, were screened for their 5-LO inhibitory properties using recombinant human 5-LO, intact human PMNL (polymorphonuclear leukocytes), and PMNL homogenates. Their mode of action was characterized by the addition of glutathione, using a fourfold cysteine 5-LO mutant and mass spectrometry analysis. SAR studies revealed several members of the tyrphostin family containing a Michael-reactive cyanoacrylate to efficiently inhibit 5-LO. We identified degrasyn (IC50 0.11 µM), tyrphostin A9 (IC50 0.8 µM), AG879 (IC50 78 nM), and AG556 (IC50 64 nM) as potent 5-LO inhibitors. Mass spectrometry analysis revealed that degrasyn and AG556 covalently bound to up to four cysteines, including C416 and/or C418 which surround the substrate entry site. Furthermore, the 5-LO inhibitory effect of degrasyn was remarkably impaired by the addition of glutathione or by the mutation of cysteines to serines at the surface of 5-LO. We successfully identified several tyrphostins as potent inhibitors of human 5-LO. Degrasyn and AG556 were able to covalently bind to 5-LO via their cyanoacrylate moiety. This provides a promising mechanism for targeting 5-LO by Michael acceptors, leading to new therapeutic opportunities in the field of inflammation and cancer.
Collapse
Affiliation(s)
- Maximilian Molitor
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Sebastian Mandel
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
2
|
Isigkeit L, Schallmayer E, Busch R, Brunello L, Menge A, Elson L, Müller S, Knapp S, Stolz A, Marschner JA, Merk D. Chemogenomics for NR1 nuclear hormone receptors. Nat Commun 2024; 15:5201. [PMID: 38890295 PMCID: PMC11189487 DOI: 10.1038/s41467-024-49493-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Nuclear receptors (NRs) regulate transcription in response to ligand binding and NR modulation allows pharmacological control of gene expression. Although some NRs are relevant as drug targets, the NR1 family, which comprises 19 NRs binding to hormones, vitamins, and lipid metabolites, has only been partially explored from a translational perspective. To enable systematic target identification and validation for this protein family in phenotypic settings, we present an NR1 chemogenomic (CG) compound set optimized for complementary activity/selectivity profiles and chemical diversity. Based on broad profiling of candidates for specificity, toxicity, and off-target liabilities, sixty-nine comprehensively annotated NR1 agonists, antagonists and inverse agonists covering all members of the NR1 family and meeting potency and selectivity standards are included in the final NR1 CG set. Proof-of-concept application of this set reveals effects of NR1 members in autophagy, neuroinflammation and cancer cell death, and confirms the suitability of the set for target identification and validation.
Collapse
Affiliation(s)
- Laura Isigkeit
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
| | - Espen Schallmayer
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
| | - Romy Busch
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany
| | - Lorene Brunello
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Amelie Menge
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Lewis Elson
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Müller
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Alexandra Stolz
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry 2, Goethe University Frankfurt, Frankfurt, Germany
| | - Julian A Marschner
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Frankfurt, Germany.
- Ludwig-Maximilians-Universität (LMU) München, Department of Pharmacy, Munich, Germany.
| |
Collapse
|
3
|
Balzulat A, Zhu WF, Flauaus C, Hernandez‐Olmos V, Heering J, Sethumadhavan S, Dubiel M, Frank A, Menge A, Hebchen M, Metzner K, Lu R, Lukowski R, Ruth P, Knapp S, Müller S, Steinhilber D, Hänelt I, Stark H, Proschak E, Schmidtko A. Discovery of a Small Molecule Activator of Slack (Kcnt1) Potassium Channels That Significantly Reduces Scratching in Mouse Models of Histamine-Independent and Chronic Itch. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307237. [PMID: 38350720 PMCID: PMC11022729 DOI: 10.1002/advs.202307237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/15/2024] [Indexed: 02/15/2024]
Abstract
Various disorders are accompanied by histamine-independent itching, which is often resistant to the currently available therapies. Here, it is reported that the pharmacological activation of Slack (Kcnt1, KNa1.1), a potassium channel highly expressed in itch-sensitive sensory neurons, has therapeutic potential for the treatment of itching. Based on the Slack-activating antipsychotic drug, loxapine, a series of new derivatives with improved pharmacodynamic and pharmacokinetic profiles is designed that enables to validate Slack as a pharmacological target in vivo. One of these new Slack activators, compound 6, exhibits negligible dopamine D2 and D3 receptor binding, unlike loxapine. Notably, compound 6 displays potent on-target antipruritic activity in multiple mouse models of acute histamine-independent and chronic itch without motor side effects. These properties make compound 6 a lead molecule for the development of new antipruritic therapies targeting Slack.
Collapse
Affiliation(s)
- Annika Balzulat
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - W. Felix Zhu
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Cathrin Flauaus
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Victor Hernandez‐Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Sunesh Sethumadhavan
- Institute of BiochemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Mariam Dubiel
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Amelie Menge
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Maureen Hebchen
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Katharina Metzner
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Ruirui Lu
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Robert Lukowski
- Department of PharmacologyToxicology and Clinical PharmacyInstitute of Pharmacy University of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Peter Ruth
- Department of PharmacologyToxicology and Clinical PharmacyInstitute of Pharmacy University of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Stefan Knapp
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Susanne Müller
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Structural Genomics Consortium (SGC)Buchmann Institute for Molecular Life SciencesGoethe University FrankfurtMax‐von‐Laue‐Str. 1560438Frankfurt am MainGermany
| | - Dieter Steinhilber
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Inga Hänelt
- Institute of BiochemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal ChemistryHeinrich Heine University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Ewgenij Proschak
- Institute of Pharmaceutical ChemistryGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMPTheodor‐Stern‐Kai 760596Frankfurt am MainGermany
| | - Achim Schmidtko
- Institute of Pharmacology and Clinical PharmacyGoethe University FrankfurtMax‐von‐Laue‐Str. 960438Frankfurt am MainGermany
| |
Collapse
|
4
|
Schmidt M, Grethe C, Recknagel S, Kipka GM, Klink N, Gersch M. N-Cyanopiperazines as Specific Covalent Inhibitors of the Deubiquitinating Enzyme UCHL1. Angew Chem Int Ed Engl 2024; 63:e202318849. [PMID: 38239128 DOI: 10.1002/anie.202318849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Cyanamides have emerged as privileged scaffolds in covalent inhibitors of deubiquitinating enzymes (DUBs). However, many compounds with a cyanopyrrolidine warhead show cross-reactivity toward small subsets of DUBs or toward the protein deglycase PARK7/DJ-1, hampering their use for the selective perturbation of a single DUB in living cells. Here, we disclose N'-alkyl,N-cyanopiperazines as structures for covalent enzyme inhibition with exceptional specificity for the DUB UCHL1 among 55 human deubiquitinases and with effective target engagement in cells. Notably, transitioning from 5-membered pyrrolidines to 6-membered heterocycles eliminated PARK7 binding and introduced context-dependent reversibility of the isothiourea linkage to the catalytic cysteine of UCHL1. Compound potency and specificity were analysed by a range of biochemical assays and with a crystal structure of a cyanopiperazine in covalent complex with UCHL1. The structure revealed a compound-induced conformational restriction of the cross-over loop, which underlies the observed inhibitory potencies. Through the rationalization of specificities of different cyanamides, we introduce a framework for the investigation of protein reactivity of bioactive nitriles of this compound class. Our results represent an encouraging case study for the refining of electrophilic compounds into chemical probes, emphasizing the potential to engineer specificity through subtle chemical modifications around the warhead.
Collapse
Affiliation(s)
- Mirko Schmidt
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Christian Grethe
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Sarah Recknagel
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Gian-Marvin Kipka
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Nikolas Klink
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| | - Malte Gersch
- Chemical Genomics Centre, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 15, D-44227, Dortmund, Germany
| |
Collapse
|
5
|
Rak M, Menge A, Tesch R, Berger LM, Balourdas DI, Shevchenko E, Krämer A, Elson L, Berger BT, Abdi I, Wahl LM, Poso A, Kaiser A, Hanke T, Kronenberger T, Joerger AC, Müller S, Knapp S. Development of Selective Pyrido[2,3- d]pyrimidin-7(8 H)-one-Based Mammalian STE20-Like (MST3/4) Kinase Inhibitors. J Med Chem 2024; 67:3813-3842. [PMID: 38422480 DOI: 10.1021/acs.jmedchem.3c02217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity and high cellular potency. The distinct cellular functions of closely related MST kinases can now be elucidated with subfamily-selective chemical tool compounds using a combination of the MST1/2 inhibitor PF-06447475 (2) and the two MST3/4 inhibitors developed. We found that MST3/4-selective inhibition caused a cell-cycle arrest in the G1 phase, whereas MST1/2 inhibition resulted in accumulation of cells in the G2/M phase.
Collapse
Affiliation(s)
- Marcel Rak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Roberta Tesch
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), 60438 Frankfurt am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Ismahan Abdi
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Laurenz M Wahl
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), 60438 Frankfurt am Main, Germany
| |
Collapse
|
6
|
Amrhein JA, Berger LM, Balourdas DI, Joerger AC, Menge A, Krämer A, Frischkorn JM, Berger BT, Elson L, Kaiser A, Schubert-Zsilavecz M, Müller S, Knapp S, Hanke T. Synthesis of Pyrazole-Based Macrocycles Leads to a Highly Selective Inhibitor for MST3. J Med Chem 2024; 67:674-690. [PMID: 38126712 DOI: 10.1021/acs.jmedchem.3c01980] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.
Collapse
Affiliation(s)
- Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz 69120 Heidelberg, Germany
| | - Julia Marie Frischkorn
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DTKT Site Frankfurt-Mainz 69120 Heidelberg, Germany
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Hu H, Tjaden A, Knapp S, Antolin AA, Müller S. A machine learning and live-cell imaging tool kit uncovers small molecules induced phospholipidosis. Cell Chem Biol 2023; 30:1634-1651.e6. [PMID: 37797617 DOI: 10.1016/j.chembiol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/09/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Drug-induced phospholipidosis (DIPL), characterized by excessive accumulation of phospholipids in lysosomes, can lead to clinical adverse effects. It may also alter phenotypic responses in functional studies using chemical probes. Therefore, robust methods are needed to predict and quantify phospholipidosis (PL) early in drug discovery and in chemical probe characterization. Here, we present a versatile high-content live-cell imaging approach, which was used to evaluate a chemogenomic and a lysosomal modulation library. We trained and evaluated several machine learning models using the most comprehensive set of publicly available compounds and interpreted the best model using SHapley Additive exPlanations (SHAP). Analysis of high-quality chemical probes extracted from the Chemical Probes Portal using our algorithm revealed that closely related molecules, such as chemical probes and their matched negative controls can differ in their ability to induce PL, highlighting the importance of identifying PL for robust target validation in chemical biology.
Collapse
Affiliation(s)
- Huabin Hu
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany
| | - Albert A Antolin
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Catalonia Barcelona, Spain.
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Rak M, Tesch R, Berger LM, Shevchenko E, Raab M, Tjaden A, Zhubi R, Balourdas DI, Joerger AC, Poso A, Krämer A, Elson L, Lučić A, Kronenberger T, Hanke T, Strebhardt K, Sanhaji M, Knapp S. Shifting the selectivity of pyrido[2,3-d]pyrimidin-7(8H)-one inhibitors towards the salt-inducible kinase (SIK) subfamily. Eur J Med Chem 2023; 254:115347. [PMID: 37094449 DOI: 10.1016/j.ejmech.2023.115347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Salt-inducible kinases 1-3 (SIK1-3) are key regulators of the LKB1-AMPK pathway and play an important role in cellular homeostasis. Dysregulation of any of the three isoforms has been associated with tumorigenesis in liver, breast, and ovarian cancers. We have recently developed the dual pan-SIK/group I p21-activated kinase (PAK) chemical probe MRIA9. However, inhibition of p21-activated kinases has been associated with cardiotoxicity in vivo, which complicates the use of MRIA9 as a tool compound. Here, we present a structure-based approach involving the back-pocket and gatekeeper residues, for narrowing the selectivity of pyrido[2,3-d]pyrimidin-7(8H)-one-based inhibitors towards SIK kinases, eliminating PAK activity. Optimization was guided by high-resolution crystal structure analysis and computational methods, resulting in a pan-SIK inhibitor, MR22, which no longer exhibited activity on STE group kinases and displayed excellent selectivity in a representative kinase panel. MR22-dependent SIK inhibition led to centrosome dissociation and subsequent cell-cycle arrest in ovarian cancer cells, as observed with MRIA9, conclusively linking these phenotypic effects to SIK inhibition. Taken together, MR22 represents a valuable tool compound for studying SIK kinase function in cells.
Collapse
Affiliation(s)
- Marcel Rak
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Roberta Tesch
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Ekaterina Shevchenko
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen, 72076, Germany; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Rezart Zhubi
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Dimitrios-Ilias Balourdas
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Andreas C Joerger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Antti Poso
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen, 72076, Germany; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany; German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), Frankfurt am Main, 60438, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Aleksandar Lučić
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2), Eberhard Karls University Tübingen, Auf der Morgenstelle 8, Tübingen, 72076, Germany; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, Kuopio, 70210, Finland
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Mourad Sanhaji
- Department of Obstetrics and Gynaecology, School of Medicine, Johann Wolfgang Goethe University, Theodor-Stern-Kai 7, Frankfurt am Main, 60590, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, Frankfurt am Main, 60438, Germany; Structural Genomics Consortium (SGC), Buchmann Institute for Life Sciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 15, Frankfurt am Main, 60438, Germany; German Translational Cancer Network (DKTK) and Frankfurt Cancer Institute (FCI), Frankfurt am Main, 60438, Germany.
| |
Collapse
|
9
|
Tredup C, Ndreshkjana B, Schneider NS, Tjaden A, Kemas AM, Youhanna S, Lauschke VM, Berger BT, Krämer A, Berger LM, Röhm S, Knapp S, Farin HF, Müller S. Deep Annotation of Donated Chemical Probes (DCP) in Organotypic Human Liver Cultures and Patient-Derived Organoids from Tumor and Normal Colorectum. ACS Chem Biol 2023; 18:822-836. [PMID: 36944371 PMCID: PMC10127199 DOI: 10.1021/acschembio.2c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Well-characterized small molecules are essential tools for studying the biology and therapeutic relevance of a target protein. However, many compounds reported in the literature and routinely studied in biomedical research lack the potency and selectivity required for mechanistic cellular studies on the function of a given protein. Furthermore, commercially available compounds often do not include useful tools developed by industry as part of their research and development efforts, as they frequently remain proprietary. The freely available donated chemical probe (DCP) library, fueled by generous donations of compounds from industry and academia, enables easy access to a steadily growing collection of these valuable and well-characterized tools. Here, we provide a systematic description of the current DCP library collection and their associated comprehensive characterization data, including a variety of in vitro and cellular assays. Of note, we characterized the set in relevant human primary models by employing hepatotoxicity screening in primary human liver spheroids and viability screening in patient-derived colorectal cancer organoids and matched normal-adjacent epithelium. Taken together, the DCP library represents a well-annotated, openly available collection of tool compounds for studying a wide range of targets, including kinases, G-protein-coupled receptors, and ion channels. As such, it represents a unique resource for the biomedical research community.
Collapse
Affiliation(s)
- Claudia Tredup
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Benardina Ndreshkjana
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596Frankfurt am Main, Germany
| | - Natalie S Schneider
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Aurino M Kemas
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Sonia Youhanna
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 65Stockholm, Sweden
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376Stuttgart, Germany
- University of Tübingen, 72074Tübingen, Germany
| | - Benedict-Tilman Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
| | - Lena M Berger
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Sandra Röhm
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt am Main60596, Germany
- German Cancer Consortium (DKTK), Heidelberg69120, Germany
- German Cancer Research Center (DKFZ), 69120Heidelberg, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60438Frankfurt am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438Frankfurt am Main, Germany
| |
Collapse
|
10
|
Chaikuad A, Merk D. An Introduction to Chemogenomics. Methods Mol Biol 2023; 2706:1-10. [PMID: 37558937 DOI: 10.1007/978-1-0716-3397-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Chemogenomics is an innovative approach in chemical biology that synergizes combinatorial chemistry and genomic and proteomic biology to systematically study the response of a biological system to a set of compounds, which can aid the identification and validation of biological targets as well as biologically active small-molecule agents responsible for a phenotypic outcome. Central to this strategy is a collection of chemically diverse compounds, a so-called chemogenomics library. Selection and annotation of vastly available chemogenomic compound candidates for an inclusion in such set present a challenge, but optimal compound selection is critical for success of chemogenomics. The library can be used in a wide variety of research applications from biological mechanism deconvolution to drug discovery. However, phenotypic screening methods are typically required to be high-throughput and equipped with a systematic analysis of complex biological-chemical interactions. This chapter provides a general outline to the chemogenomics approach, including concept and critical steps in all stages of this innovative chemical biology strategy.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
11
|
Tjaden A, Knapp S, Müller S. Annotation of the Effect of Chemogenomic Compounds on Cell Health Using High-Content Microscopy in Live-Cell Mode. Methods Mol Biol 2023; 2706:59-73. [PMID: 37558941 DOI: 10.1007/978-1-0716-3397-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The characterization of chemogenomic libraries with respect to their general effect on cellular health represents essential data for the annotation of phenotypic responses. Here, we describe a multidimensional high-content live cell assay that allows to examine cell viability in different cell lines, based on their nuclear morphology as well as modulation of small molecules of tubulin structure, mitochondrial health, and membrane integrity. The protocol monitors cells during a time course of 48 h using osteosarcoma cells, human embryonic kidney cells, and untransformed human fibroblasts as an example. The described protocol can be easily established and it can be adapted to other cell lines or other parameters important for cellular health.
Collapse
Affiliation(s)
- Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
12
|
Elson L, Tjaden A, Knapp S, Müller S. Characterization of Cellular Viability Using Label-Free Brightfield Live-Cell Imaging. Methods Mol Biol 2023; 2706:75-88. [PMID: 37558942 DOI: 10.1007/978-1-0716-3397-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
In recent years, the assembly and annotation of chemogenomic libraries have gained interest by the phenotypic screening community. Apart from basic annotations of the compound potency and selectivity, these compound libraries benefit in particular from annotation regarding the effect of the inhibitors on cellular viability to distinguish between on-target effects of a compound and unspecific cytotoxicity. Here, we provide a protocol to determine viability as a first determinant in compound quality control, using the Incucyte live-cell imaging system. The compounds are classified according to their calculated growth rate to determine a cytotoxic, cytostatic, or healthy outcome. All compounds affecting the growth rate can be further evaluated regarding their specific effects on cell health in a high-content live-cell multiplex assay, described in Chapter 5 .
Collapse
Affiliation(s)
- Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
- Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
13
|
Amrhein JA, Berger LM, Tjaden A, Krämer A, Elson L, Tolvanen T, Martinez-Molina D, Kaiser A, Schubert-Zsilavecz M, Müller S, Knapp S, Hanke T. Discovery of 3-Amino-1 H-pyrazole-Based Kinase Inhibitors to Illuminate the Understudied PCTAIRE Family. Int J Mol Sci 2022; 23:ijms232314834. [PMID: 36499165 PMCID: PMC9736855 DOI: 10.3390/ijms232314834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The PCTAIRE subfamily belongs to the CDK (cyclin-dependent kinase) family and represents an understudied class of kinases of the dark kinome. They exhibit a highly conserved binding pocket and are activated by cyclin Y binding. CDK16 is targeted to the plasma membrane after binding to N-myristoylated cyclin Y and is highly expressed in post-mitotic tissues, such as the brain and testis. Dysregulation is associated with several diseases, including breast, prostate, and cervical cancer. Here, we used the N-(1H-pyrazol-3-yl)pyrimidin-4-amine moiety from the promiscuous inhibitor 1 to target CDK16, by varying different residues. Further optimization steps led to 43d, which exhibited high cellular potency for CDK16 (EC50 = 33 nM) and the other members of the PCTAIRE and PFTAIRE family with 20-120 nM and 50-180 nM, respectively. A DSF screen against a representative panel of approximately 100 kinases exhibited a selective inhibition over the other kinases. In a viability assessment, 43d decreased the cell count in a dose-dependent manner. A FUCCI cell cycle assay revealed a G2/M phase cell cycle arrest at all tested concentrations for 43d, caused by inhibition of CDK16.
Collapse
Affiliation(s)
- Jennifer Alisa Amrhein
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Lena Marie Berger
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Andreas Krämer
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
| | - Lewis Elson
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Tuomas Tolvanen
- Division of Rheumatology, Department of Medicine Solna, Karolinska University Hospital and Karolinska Institute, Solnavägen 1, 17177 Solna, Sweden
| | | | - Astrid Kaiser
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), DKTK Site Frankfurt-Mainz, 69120 Heidelberg, Germany
- Correspondence: (S.K.); (T.H.)
| | - Thomas Hanke
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe-University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
- Correspondence: (S.K.); (T.H.)
| |
Collapse
|
14
|
Tjaden A, Giessmann RT, Knapp S, Schröder M, Müller S. High-content live-cell multiplex screen for chemogenomic compound annotation based on nuclear morphology. STAR Protoc 2022; 3:101791. [PMID: 36317177 PMCID: PMC9617200 DOI: 10.1016/j.xpro.2022.101791] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Well-characterized small molecules enable the study of cell processes and facilitate target validation. Here, we describe a high-content multiplex screen to investigate cell viability over 48 h, which can be combined with investigating phenotypic features, such as tubulin binding and mitochondrial content, as initial cellular quality control of diverse compounds. The protocol is on a live-cell basis and easily adaptable and scalable. It details cell preparation, compound handling, plate layout configuration, image acquisition with the CQ1, and data analysis using the CellPathfinder software. For complete details on the use and execution of this protocol, please refer to Tjaden et al. (2022). A fast and flexible multiplex assay for compound annotation Evaluate cell properties in live-cell mode Machine learning techniques to optimize high-content data evaluation Easily adaptable and scalable for different phenotypic features
Publisher’s note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.9, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Robert T Giessmann
- Bayer AG, Research & Development, Pharmaceuticals, 13353 Berlin, Germany; Institute for Globally Distributed Open Research and Education (IGDORE), Berlin, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.9, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
| | - Martin Schröder
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.9, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany.
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str.9, 60438 Frankfurt, Germany; Structural Genomics Consortium, BMLS, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany.
| |
Collapse
|
15
|
Grethe C, Schmidt M, Kipka GM, O'Dea R, Gallant K, Janning P, Gersch M. Structural basis for specific inhibition of the deubiquitinase UCHL1. Nat Commun 2022; 13:5950. [PMID: 36216817 PMCID: PMC9549030 DOI: 10.1038/s41467-022-33559-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/15/2022] [Indexed: 11/11/2022] Open
Abstract
Ubiquitination regulates protein homeostasis and is tightly controlled by deubiquitinases (DUBs). Loss of the DUB UCHL1 leads to neurodegeneration, and its dysregulation promotes cancer metastasis and invasiveness. Small molecule probes for UCHL1 and DUBs in general could help investigate their function, yet specific inhibitors and structural information are rare. Here we report the potent and non-toxic chemogenomic pair of activity-based probes GK13S and GK16S for UCHL1. Biochemical characterization of GK13S demonstrates its stereoselective inhibition of cellular UCHL1. The crystal structure of UCHL1 in complex with GK13S shows the enzyme locked in a hybrid conformation of apo and Ubiquitin-bound states, which underlies its UCHL1-specificity within the UCH DUB family. Phenocopying a reported inactivating mutation of UCHL1 in mice, GK13S, but not GK16S, leads to reduced levels of monoubiquitin in a human glioblastoma cell line. Collectively, we introduce a set of structurally characterized, chemogenomic probes suitable for the cellular investigation of UCHL1. The deubiquitinase UCHL1 has been linked to cancer invasiveness and neurodegeneration yet its molecular roles have remained poorly defined. Here the authors reveal the structural basis for how UCHL1 can be specifically inhibited and how chemogenomic probes can be used to dissect its functions in living cells.
Collapse
Affiliation(s)
- Christian Grethe
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Mirko Schmidt
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Gian-Marvin Kipka
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Rachel O'Dea
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Kai Gallant
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany.,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany
| | - Petra Janning
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Str. 11, Dortmund, Germany
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Otto-Hahn-Str. 15, Dortmund, Germany. .,TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 15, Dortmund, Germany.
| |
Collapse
|
16
|
Němec V, Schwalm MP, Müller S, Knapp S. PROTAC degraders as chemical probes for studying target biology and target validation. Chem Soc Rev 2022; 51:7971-7993. [PMID: 36004812 DOI: 10.1039/d2cs00478j] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule degraders such as PROTACs (PROteolysis TArgeting Chimeras) have emerged as new promising pharmacological modalities and the first PROTAC drug candidates are now studied clinically. The catalytic properties of PROTACs, acting as chemical degraders of a protein of interest (POI), represent an attractive new strategy for drug development. The development and characterization of PROTACs requires an array of additional assay systems that track the degradation pathway leading ultimately to degradation of the POI, identifying critical steps for PROTAC optimization. In addition to their exciting translational potential, PROTACs represent versatile chemical tools that considerably expanded our chemical biology toolbox and significantly enlarged the proteome that can be modulated by small molecules. Similar to conventional chemical probes, PROTACs used as chemical probes in target validation require comprehensive characterization. As a consequence, PROTAC-specific quality criteria should be defined by the chemical biology community. These criteria need to comprise additional or alternative parameters compared to those for conventional occupancy-driven chemical probes, such as the maximum level of target degradation (Dmax), confirmation of a proteasome dependent degradation mechanism and, importantly, also kinetic parameters of POI degradation. The kinetic aspects are particularly relevant for PROTACs that harbor covalent binding moieties. Here, we review recent progress in the development of assay systems for PROTAC characterization and suggest a set of criteria for PROTACs as high quality chemical probes.
Collapse
Affiliation(s)
- Václav Němec
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Martin P Schwalm
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Susanne Müller
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institut für Pharmazeutische Chemie, Goethe-University Frankfurt, Biozentrum, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany. .,Structural Genomics Consortium, Goethe-University Frankfurt, Buchmann Institute for Life Sciences, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany.,German Cancer Consortium (DKTK)/German Cancer Research Center (DKFZ), DKTK site Frankfurt-Mainz, 69120 Heidelberg, Germany
| |
Collapse
|
17
|
H M Ehrler J, Brunst S, Tjaden A, Kilu W, Heering J, Hernandez-Olmos V, Krommes A, Kramer JS, Steinhilber D, Schubert-Zsilavecz M, Müller-Knapp S, Merk D, Proschak E. Compilation and Evaluation of Fatty Acid Mimetics Screening Library. Biochem Pharmacol 2022; 204:115191. [PMID: 35907497 DOI: 10.1016/j.bcp.2022.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Focused compound libraries are well-established tools for hit identification in drug discovery and chemical probe development. We present the compilation and application of a focused screening library of fatty acid mimetics (FAMs), which are compounds designed to bind the orthosteric site proteins that endogenously accommodate natural fatty acids and lipid metabolites. This set complies with chemical properties of FAM and was found suitable for use also in cellular setting. Several hits were retrieved in screening the focused library against diverse fatty acid binding targets including the enzymes soluble epoxide hydrolase (sEH) and leukotriene A4 hydrolase (LTA4H), the nuclear receptors peroxisome proliferator-activated receptor γ (PPARγ) and retinoid X receptor α (RXRα), the carrier proteins fatty acid binding protein 4 and 5 (FABP4 and FABP5), as well as the G-protein coupled receptors leukotriene B4 receptor 1 (BLT1) and free-fatty acid receptor 1 (FFAR1). Thus, the focused FAM library is suitable to obtain chemical starting matter for fatty acid binding proteins and valuable extends available screening collections.
Collapse
Affiliation(s)
- Johanna H M Ehrler
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Steffen Brunst
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Amelie Tjaden
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Whitney Kilu
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Jan Heering
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Andrè Krommes
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Jan S Kramer
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany
| | - Manfred Schubert-Zsilavecz
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany
| | - Susanne Müller-Knapp
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Ludwig-Maximilians-Universität München, Department of Pharmacy, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, D-60596 Frankfurt, Germany.
| |
Collapse
|