1
|
Voyard A, Ciuraru R, Lafouge F, Decuq C, Fortineau A, Loubet B, Staudt M, Rees F. Emissions of volatile organic compounds from aboveground and belowground parts of rapeseed (Brassica napus L.) and tomato (Solanum lycopersicum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177081. [PMID: 39437913 DOI: 10.1016/j.scitotenv.2024.177081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Root systems represent a source of Volatile Organic Compounds (VOCs) that may significantly contribute to the atmospheric VOC emissions from agroecosystems and shape soil microbial activity. To gain deeper insights into the role of roots in the VOC emissions from crops, we developed a dynamic chamber with isolated aboveground and belowground compartments, allowing for simultaneous measurements of VOC fluxes from both compartments in controlled conditions. We continuously monitored VOC emissions from intact plants of rapeseed (Brassica napus L.) and tomato (Solanum lycopersicum L.) i) over 24 h when plants were rooted in soil, and ii) over 6 h following soil removal. The measurements were performed using a highly sensitive Proton Transfer Reaction - Time of Flight - Mass Spectrometer and a Thermic Desorption- Gas Chromatography - Mass Spectrometer. Net VOC emissions measured at the soil surface represented <5 % of the aboveground emissions and were higher during the day than at night. However, when soil was removed, belowground VOC emissions became up to two times higher than aboveground emissions. This large increase in VOC emissions from roots observed after soil removal was almost exclusively due to methanol emissions. Differences in VOC composition between plant species were also detected with and without soil: rapeseed emitted more sulphurous and nitrogenous compounds and tomato more mono- and poly-unsaturated hydrocarbons. Our results suggest that roots may be a largely underestimated VOC source and that the soil is a strong sink for root-borne methanol. Root VOC emissions should be considered when agricultural practices involve roots excavation.
Collapse
Affiliation(s)
- Auriane Voyard
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Raluca Ciuraru
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France.
| | - Florence Lafouge
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Céline Decuq
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Alain Fortineau
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Benjamin Loubet
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France
| | - Michael Staudt
- CEFE, CNRS, EPHE, IRD, Université Montpellier, Montpellier, France
| | - Frédéric Rees
- Université Paris Saclay, INRAE, AgroParisTech, UMR ECOSYS, France.
| |
Collapse
|
2
|
Thomas G, Caulfield J, Nikolaeva-Reynolds L, Birkett MA, Vuts J. Solvent Extraction of PDMS Tubing as a New Method for the Capture of Volatile Organic Compounds from Headspace. J Chem Ecol 2024; 50:85-99. [PMID: 38246946 DOI: 10.1007/s10886-024-01469-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Polydimethylsiloxane (PDMS) tubing is increasingly being used to collect volatile organic compounds (VOCs) from static biological headspace. However, analysis of VOCs collected using PDMS tubing often deploys thermal desorption, where samples are considered as 'one-offs' and cannot be used in multiple experiments. In this study, we developed a static headspace VOC collection method using PDMS tubing which is solvent-based, meaning that VOC extracts can be used multiple times and can be linked to biological activity. Using a synthetic blend containing a range of known semiochemicals (allyl isothiocyanate, (Z)-3-hexen-1-ol, 1-octen-3-one, nonanal, (E)-anethol, (S)-bornyl acetate, (E)-caryophyllene and pentadecane) with differing chemical and physicochemical properties, VOCs were collected in static headspace by exposure to PDMS tubing with differing doses, sampling times and lengths. In a second experiment, VOCs from oranges were collected using PDMS sampling of static headspace versus dynamic headspace collection. VOCs were eluted with diethyl ether and analysed using gas chromatography - flame ionization detector (GC-FID) and coupled GC - mass spectrometry. GC-FID analysis of collected samples showed that longer PDMS tubes captured significantly greater quantities of compounds than shorter tubes, and that sampling duration significantly altered the recovery of all tested compounds. Moreover, greater quantities of compounds were recovered from closed compared to open systems. Finally, analysis of orange headspace VOCs showed no qualitative differences in VOCs recovered compared to dynamic headspace collections, although quantities sampled using PDMS tubing were lower. In summary, extraction of PDMS tubing with diethyl ether solvent captures VOCs from the headspace of synthetic blends and biological samples, and the resulting extracts can be used for multiple experiments linking VOC content to biological activity.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - John Caulfield
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | - Michael A Birkett
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - József Vuts
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK.
| |
Collapse
|
3
|
Lee Díaz AS, Minchev Z, Raaijmakers JM, Pozo MJ, Garbeva P. Impact of bacterial and fungal inoculants on the resident rhizosphere microbiome and the volatilome of tomato plants under leaf herbivory stress. FEMS Microbiol Ecol 2024; 100:fiad160. [PMID: 38331428 PMCID: PMC10858387 DOI: 10.1093/femsec/fiad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 11/16/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Various studies have addressed the impact of microbial inoculants on the composition of the resident microbiome. How microbial inoculants impact plant metabolism and interact with the resident rhizobiota under herbivory stress remains elusive. Here, we investigated the impact of two bacterial and two fungal inoculants, inoculated as single species and as a synthetic community, on the rhizosphere microbiome and volatilome of tomato plants (Solanum lycopersicum) comparing nonstress conditions to exposed to leaf herbivory by Spodoptera exigua. Based on amplicon sequencing analysis, rhizobacterial community composition was significantly affected by all four inoculants and the magnitude of this effect was dependent on herbivory stress. Fungal community composition was altered by the microbial inoculants but independent of herbivory stress. The rhizosphere volatilome was impacted by the microbial inoculation and differences between treatments were evened under herbivory stress. Each microbial inoculant caused unique changes in the volatilome of stressed plants but also shared similar responses, in particular the enhanced production of dimethyl disulfide and benzothiazole. In conclusion, the introduction of microbial inoculants in the tomato rhizosphere caused unique as well as common changes in the rhizosphere microbiome and volatilome, but these changes were minor compared to the microbiome changes induced by herbivory stress.
Collapse
Affiliation(s)
- Ana Shein Lee Díaz
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| | - Zhivko Minchev
- Department of Soil Microbiology and Symbiotic Systems
, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientfícias (CSIC), Calle Prof. Albareda, 1, 18008, Granada, Spain
| | - Jos M Raaijmakers
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - María José Pozo
- Department of Soil Microbiology and Symbiotic Systems
, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientfícias (CSIC), Calle Prof. Albareda, 1, 18008, Granada, Spain
| | - Paolina Garbeva
- Department of Microbial Ecology, The Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the Netherlands
| |
Collapse
|
4
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
5
|
Nakayasu M, Takamatsu K, Yazaki K, Sugiyama A. Plant specialized metabolites in the rhizosphere of tomatoes: secretion and effects on microorganisms. Biosci Biotechnol Biochem 2022; 87:13-20. [PMID: 36373409 DOI: 10.1093/bbb/zbac181] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
Abstract
Plants interact with microorganisms in the phyllosphere and rhizosphere. Here the roots exude plant specialized metabolites (PSMs) that have diverse biological and ecological functions. Recent reports have shown that these PSMs influence the rhizosphere microbiome, which is essential for the plant's growth and health. This review summarizes several specialized metabolites secreted into the rhizosphere of the tomato plant (Solanum lycopersicum), which is an important model species for plant research and a commercial crop. In this review, we focused on the effects of such plant metabolites on plant-microbe interactions. We also reviewed recent studies on improving the growth of tomatoes by analyzing and reconstructing the rhizosphere microbiome and discussed the challenges to be addressed in establishing sustainable agriculture.
Collapse
Affiliation(s)
- Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kyoko Takamatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, Japan
| |
Collapse
|
6
|
Eggermont D, Spadafora ND, Aspromonte J, Purcaro G. Unraveling the impact of the capsule material on the aroma of brewed coffee by headspace analysis using a HiSorb probe followed by reverse fill/flush flow modulation GC×GC-MS. Anal Bioanal Chem 2022; 415:2511-2521. [PMID: 36482082 DOI: 10.1007/s00216-022-04457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/28/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
The present paper discusses the use of a high-concentration-capacity tool, HiSorb, to investigate the impact of capsule material on the aroma profile of espresso-brewed coffee. The specific high-concentration-capacity probe used is characterized by a sorbent volume (63 μL) intermediate between the solid-phase microextraction (SPME) fiber (0.6 μL) and the stir-bar sorptive extraction rod (126 μL). The extraction performance of the HiSorb was compared, in terms of both absolute signal and compound coverage, with both an equivalent sorbent (polydimethylsiloxane) and a divinylbenzene/carboxen/polydimethylsiloxane SPME fiber using both targeted and untargeted approaches. The HiSorb showed superior extraction compared with the SPME fibers. The HiSorb was then optimized in terms of extraction time and temperature and used to investigate the volatile profile of 23 espresso-brewed coffees prepared with capsules made of different materials-aluminum, compostable, and aluminum multilayer pack-prepared using a refillable capsule. Comprehensive two-dimensional gas chromatography equipped with a reverse fill/flush flow modulator and coupled to mass spectrometry was used to obtain a chromatographic fingerprint of the volatile profile of the brewed coffee. The data were aligned and compared using a tile-based approach, and the results were obtained by performing raw data mining within the same software platform. The data mining enabled the extraction of informative features responsible for the differentiation between the different capsule materials, showing a significant depletion in aroma intensity in the compostable capsule.
Collapse
Affiliation(s)
- Damien Eggermont
- Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie des agro-biosystèmes, Passage des Déportés 2, 5030, Gembloux, Belgium
| | - Natasha Damiana Spadafora
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Juan Aspromonte
- Laboratorio de Investigación y Desarrollo de Métodos Analíticos, LIDMA, Facultad de Ciencias Exactas (Universidad Nacional de La Plata, CIC-PBA, CONICET), 1900, La Plata, Argentina
| | - Giorgia Purcaro
- Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie des agro-biosystèmes, Passage des Déportés 2, 5030, Gembloux, Belgium.
| |
Collapse
|