1
|
Alijani S, Raji MR, Bistgani ZE, Ehtesham Nia A, Farajpour M. Mitigation of salinity stress in yarrow (Achillea millefolium L.) plants through spermidine application. PLoS One 2024; 19:e0304831. [PMID: 38923971 PMCID: PMC11206933 DOI: 10.1371/journal.pone.0304831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
This study investigated the mitigating effects of spermidine on salinity-stressed yarrow plants (Achillea millefolium L.), an economically important medicinal crop. Plants were treated with four salinity levels (0, 30, 60, 90 mM NaCl) and three spermidine concentrations (0, 1.5, 3 μM). Salinity induced electrolyte leakage in a dose-dependent manner, increasing from 22% at 30 mM to 56% at 90 mM NaCl without spermidine. However, 1.5 μM spermidine significantly reduced leakage across salinities by 1.35-11.2% relative to untreated stressed plants. Photosynthetic pigments (chlorophyll a, b, carotenoids) also exhibited salinity- and spermidine-modulated responses. While salinity decreased chlorophyll a, both spermidine concentrations increased chlorophyll b and carotenoids under most saline conditions. Salinity and spermidine synergistically elevated osmoprotectants proline and total carbohydrates, with 3 μM spermidine augmenting proline and carbohydrates up to 14.4% and 13.1% at 90 mM NaCl, respectively. Antioxidant enzymes CAT, POD and APX displayed complex regulation influenced by treatment factors. Moreover, salinity stress and spermidine also influenced the expression of linalool and pinene synthetase genes, with the highest expression levels observed under 90 mM salt stress and the application of 3 μM spermidine. The findings provide valuable insights into the responses of yarrow plants to salinity stress and highlight the potential of spermidine in mitigating the adverse effects of salinity stress.
Collapse
Affiliation(s)
- Sajedeh Alijani
- Department of Horticulture, College of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mohammad-Reza Raji
- Department of Horticulture, College of Agriculture, Lorestan University, Khorramabad, Iran
| | - Zohreh Emami Bistgani
- Isfahan Agricultural and Natural Resources Research and Education Center, Agricultural Research Education and Extension Organization (AREEO), Isfahan, Iran
| | - Abdollah Ehtesham Nia
- Department of Horticulture, College of Agriculture, Lorestan University, Khorramabad, Iran
| | - Mostafa Farajpour
- Crop and Horticultural Science Research Department, Mazandaran Agricultural and Natural Resources Research and Education Center, AREEO, Sari, Iran
| |
Collapse
|
2
|
Alghamdi AH, Ahmed AA, Abdalgadir H, Bashir M, Khalid A, Abdalla AN, Elzubier ME, Adnan Almaimani R, Refaat B, Alzahrani K, Alghamdi SM, Gul S. In-vitro Cytotoxicity Investigations for Phytoconstituents of Saudi Medicinal Plants With Putative Ocular Effects. Integr Cancer Ther 2024; 23:15347354241256649. [PMID: 38819027 PMCID: PMC11143859 DOI: 10.1177/15347354241256649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/20/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND Metastatic secondary ocular tumors spread from systemic malignancies, including breast cancer. This study aimed to evaluate the cytotoxicity of extracts from 5 medicinal plants native to Saudi Arabia. METHODS For preliminary activity screening, cytotoxicity using the MTT assay and selectivity index determinations were made for medicinal plant extracts against various cancer cell-lines. The most promising extract was subjected to GC-MS analysis to determine the phytochemical composition. Clonogenic assays were performed using the most promising extract to confirm the initial results. Finally, western blot analysis was used to determine the modulation in expression of survivin and P27 suppressor genes in the human breast adenocarcinoma (MCF7) cell-line to understand the potential mechanistic properties of the active plant extract. RESULTS The 5 plant extracts showed various cytotoxic activity levels using IC50. The most active extract was found to be the leaves of Capparis spinosa L. (BEP-07 extract) against the MCF7 breast cancer cell-line (IC50 = 3.61 ± 0.99 μg/ml) and selectivity index of 1.17 compared to the normal human fetal lung fibroblast (MRC5) cells. BEP-07 extract showed a dose dependent clonogenic effect against the MCF7 colonies which was comparable with the effect of doxorubicin. BEP-07 extract caused a significant decrease of survivin and increase in P27 expression compared to control GAPDH at its highest dose (14 µg/ml). The GC-MS chromatogram of Capparis spinosa L. (BEP-07 extract) revealed the existence of 145 compounds, belonging to the diverse classes of phytoconstituents. Fatty acids and their derivatives represent 15.4%, whilst octadecanoic acid, 2,3-dihydroxypropyl ester was the principal component (7.9%) detected. CONCLUSION Leaves of Capparis spinosa L. (BEP-07 extract) exhibited a significant cytotoxic effect particularly against breast cancer cells. It exhibited this effect through survivin inhibition and via P27 upregulation. The detected phytoconstituents in the plant extract might be involved in tested cytotoxic activity, while further investigations are required to complete the drug candidate profile.
Collapse
Affiliation(s)
| | - Aimun A.E. Ahmed
- Al Baha University, Al Baha, Saudi Arabia
- Omdurman Islamic University, Khartoum, Sudan
| | | | | | | | - Ashraf N. Abdalla
- Umm Al-Qura University, Makkah, Saudi Arabia
- National Center for Research, Khartoum, Sudan
| | | | | | | | | | | | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology, Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, Hamburg, Germany
| |
Collapse
|
3
|
Volkov V, Lobanov A, Voronkov M, Baygildiev T, Misin V, Tsivileva O. Kinetics and Mechanism of Epinephrine Autoxidation in the Presence of Plant Superoxide Inhibitors: A New Look at the Methodology of Using a Model System in Biological and Chemical Research. Antioxidants (Basel) 2023; 12:1530. [PMID: 37627525 PMCID: PMC10451219 DOI: 10.3390/antiox12081530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Superoxide is the primary active oxygen form produced in living organisms. Because of superoxide anion radical formation during epinephrine oxidation in alkaline medium, this system is offered in some works for antioxidant activity analysis, however, without enough physicochemical justification. Therefore, the task of developing reliable methods for analyzing the superoxide inhibition activity of various objects is very urgent. In this work, a kinetic model of epinephrine autoxidation in an alkaline medium in the presence of antioxidants of plant origin is proposed. The participation of chain reactions with long oxidation chains in this process is revealed. The limiting stage of the process is a one-electron reduction of oxygen by the anionic forms of the phenolic hydroxyls of epinephrine. The appearance of the absorption maximum at a wavelength of 347 nm during epinephrine autoxidation is associated with adrenolutin formation, which is confirmed by HPLC/UV/MS. No adduct formation between phenolic antioxidants and epinephrine oxidation products was found. The complex U-shaped character of epinephrine autoxidation rate dependence on the content of antioxidants in the reaction system was shown. The study of the kinetics of epinephrine autoxidation in the presence of an individual phenolic plant superoxide inhibitor, chlorogenic acid, was carried out for the first time. The inhibitory effect of yarrow, chamomile, and bur beggar-ticks plant extracts in the adrenaline system was examined.
Collapse
Affiliation(s)
- Vladimir Volkov
- Laboratory of Chemistry of Antioxidants, N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia; (M.V.); (V.M.)
| | - Anton Lobanov
- Department of Dynamics of Chemical and Biological Processes, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119991, Russia;
| | - Mikhail Voronkov
- Laboratory of Chemistry of Antioxidants, N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia; (M.V.); (V.M.)
| | - Timur Baygildiev
- Department of Chemistry, Lomonosov Moscow State University, 1-3 Leninskie Gory, Moscow 119991, Russia;
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Vyacheslav Misin
- Laboratory of Chemistry of Antioxidants, N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, Moscow 119334, Russia; (M.V.); (V.M.)
| | - Olga Tsivileva
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov 410049, Russia
| |
Collapse
|
4
|
Schepetkin IA, Özek G, Özek T, Kirpotina LN, Klein RA, Khlebnikov AI, Quinn MT. Composition and Biological Activity of the Essential Oils from Wild Horsemint, Yarrow, and Yampah from Subalpine Meadows in Southwestern Montana: Immunomodulatory Activity of Dillapiole. PLANTS (BASEL, SWITZERLAND) 2023; 12:2643. [PMID: 37514257 PMCID: PMC10383985 DOI: 10.3390/plants12142643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Agastache urticifolia (Benth.) Kuntze (horsemint), Achillea millefolium L. (yarrow), and Perideridia gairdneri (Hook. & Arn.) Mathias (yampah) are native, culturally important plants that grow in the subalpine meadows of Montana. Analysis of the composition of essential oils extracted from these plants showed that the main components of essential oils obtained from flowers and leaves of A. urticifolia (designated as AUF/AUL) were menthone (2.7/25.7%), isomenthone (2.6/29.1%), pulegone (78.9/28.8%), and limonene (4.2/6.2%), whereas essential oils obtained from the inflorescence of A. millefolium (designated as AMI) were high in α-thujone (17.1%) and β-thujone (14.9%), 1,8-cineole (17.0%), camphor (13.0%), sabinene (7.0%), guaia-3,9-dien-11-ol (3.2%), and terpinen-4-ol (2.5%). Essential oils obtained from the inflorescence of P. gairdneri (designated as PGI) contained high amounts of dillapiole (30.3%), p-cymen-8-ol (14.1%), terpinolene (12.0%), 4-hydroxy-4-methyl-cyclohex-2-enone (6.2%), and γ-terpinene (2.4%). Evaluation of their immunomodulatory activity demonstrated that essential oils extracted from all of these plants could activate human neutrophils with varying efficacy. Analysis of individual components showed that dillapiole activated human neutrophil intracellular Ca2+ flux ([Ca2+]i) (EC50 = 19.3 ± 1.4 μM), while α-thujone, β-thujone, menthone, isomenthone, and pulegone were inactive. Since dillapiole activated neutrophils, we also evaluated if it was able to down-regulate neutrophil responses to subsequent agonist activation and found that pretreatment with dillapiole inhibited neutrophil activation by the chemoattractant fMLF (IC50 = 34.3 ± 2.1 μM). Pretreatment with P. gairdneri essential oil or dillapiole also inhibited neutrophil chemotaxis induced by fMLF, suggesting these treatments could down-regulate human neutrophil responses to inflammatory chemoattractants. Thus, dillapiole may be a novel modulator of human neutrophil function.
Collapse
Affiliation(s)
- Igor A Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Gulmira Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Temel Özek
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| | - Liliya N Kirpotina
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Robyn A Klein
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | | | - Mark T Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
5
|
The Influence of Freeze-Dried Alcohol-Water Extracts from Common Yarrow ( Achillea millefolium L.) and German Chamomile ( Matricaria chamomilla L.) on the Properties of Elastomer Vulcanizates. Int J Mol Sci 2022; 23:ijms232315048. [PMID: 36499374 PMCID: PMC9737587 DOI: 10.3390/ijms232315048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
This research work aimed to investigate the properties of freeze-dried extracts from Matricaria chamomilla L. and Achillea millefolium L. and to perform a characterization of their impact on the natural rubber-based vulcanizates. First, extracts were prepared in three different solvents at selected volume ratios: water (100), water-methanol (50/50), and water-ethanol (50/50). Next, the freeze-drying of extracts was established and then obtained bio-additives were introduced to the rubber mixtures. Freeze-dried extracts were investigated by UV-VIS diffuse reflectance spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), Near-Infrared spectroscopy (NIR) and thermogravimetric analysis (TGA). Antioxidant activity and total phenolic content (TPC) were also defined. Rubber mixtures were examined in a rheometer and after vulcanization they were subjected to accelerated simulated aging by UV radiation and thermo-oxidative aging. To determine the resistance of vulcanizates to the degradation processes, the study of cross-linking density (equilibrium swelling method), mechanical properties (tensile strength, elongation at break) and color change were conducted. Performed studies proved the antioxidant activity of freeze-dried extracts caused by the high content of polyphenols and their beneficial influence on the properties of elastomer vulcanizates.
Collapse
|
6
|
Achillea millefolium Essential Oil Mitigates Peptic Ulcer in Rats through Nrf2/HO-1 Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227908. [PMID: 36432009 PMCID: PMC9692697 DOI: 10.3390/molecules27227908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
Extreme ethanol ingestion is associated with developing gastric ulcers. Achillea millefolium (yarrow) is one of the most commonly used herbs with numerous proven pharmacological actions. The goal of the hereby investigation is to explore the gastroprotective action of yarrow essential oil against ethanol-induced gastric ulcers and to reveal the unexplored mechanisms. Rats were distributed into five groups (n = 6); the control group administered 10% Tween 20, orally, for two weeks; the ethanol group administered absolute ethanol (5 mL/kg) to prompt gastric ulcer on the last day of the experiment. Yarrow essential oil 100 or 200 mg/kg + ethanol groups pretreated with yarrow oil (100 or 200 mg/kg, respectively), orally, for two weeks prior to gastric ulcer induction by absolute ethanol. Lanso + ethanol group administered 20 mg/kg lansoprazole, orally, for two weeks prior to gastric ulcer induction by ethanol. Results of the current study showed that ethanol caused several macroscopic and microscopic alterations, amplified lipid peroxidation, pro-inflammatory cytokines, and apoptotic markers, as well as diminished PGE2, NO, and antioxidant enzyme activities. On the other hand, animals pretreated with yarrow essential oil exhibited fewer macroscopic and microscopic modifications, reduced ulcer surface, and increased Alcian blue binding capacity, pH, and pepsin activity. In addition, yarrow essential oil groups exhibited reduced pro-inflammatory cytokines, apoptotic markers, and MDA, restored the PGE2 and NO levels, and recovered the antioxidant enzyme activities. Ethanol escalated Nrf2 and HO-1 expressions, whereas pretreatment of yarrow essential oil caused further intensification in Nrf2 and HO-1. To conclude, the current study suggested yarrow essential oil as a gastroprotective agent against ethanol-induced gastric lesions. This gastroprotective effect could be related to the antioxidant, anti-inflammatory, and anti-apoptotic actions of the essential oil through the instigation of the Nrf2/HO-1 pathway.
Collapse
|