1
|
Xu C, Wen S, Du X, Zou X, Leung ELH, Zhou G, Wu Q, Shen B. Targeting regulated cell death (RCD) with naturally derived sesquiterpene lactones in cancer therapy. Pharmacol Res 2025; 211:107553. [PMID: 39706282 DOI: 10.1016/j.phrs.2024.107553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Regulated cell death (RCD) is a type of cell death modulated by specific signal transduction pathways. Currently, known RCD types include apoptosis, autophagy, ferroptosis, necroptosis, cuproptosis, pyroptosis, and NETosis. Mutations in cancer cells may prevent the RCD pathway; therefore, targeting RCD in tumors has become a promising therapeutic approach. Sesquiterpene lactones represent a diverse and extensive class of plant-derived phytochemicals that serve as potential sources for developing various drugs. Recent studies have shown that sesquiterpene lactones have promising potential in cancer treatment. This review systematically summarizes recent progress in the study of sesquiterpene lactones as antitumor agents, highlighting their role in targeting various RCD pathways, including those involved in apoptosis, autophagy, ferroptosis, necroptosis, and cuproptosis. The primary purpose of the present review is to provide a clear picture of the regulation of RCD by sesquiterpene lactones against different targets in various cancers, which will facilitate the development of new strategies for cancer therapy.
Collapse
Affiliation(s)
- Cong Xu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao
| | - Shaodi Wen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Xiaoyue Du
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Xinhua Zou
- Department of Vascular and Tumor Interventional Medicine, Affiliated Hospital of Jining Medical University, Jining 272000, China
| | | | - Guoren Zhou
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210000, China; DongTai People's Hospital, Dongtai, Jiangsu, China.
| |
Collapse
|
2
|
Yin X, Wang X, Xu L, Zhao J, Li C, Lin J. Widely Targeted Metabolomics Revealed the Metabolic Basis of Physiological Function and Flavor of Natto. Metabolites 2024; 14:663. [PMID: 39728444 DOI: 10.3390/metabo14120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Natto is a fermented product derived from soybeans through the action of Bacillus subtilis natto, possessing various pharmacological and health-promoting properties. However, due to the absence of large-scale and systematic investigations into its metabolite profile, the mechanisms governing the biological functions and flavor characteristics of natto remain incompletely elucidated. Methods: In this study, a comprehensive, widely targeted metabolome analysis was conducted using UHPLC-MS/MS to compare soybeans and natto. Results: A total of 569 metabolites were identified, of which 160 exhibited differential expression between natto and soybeans, including 28 amino acids and their derivatives, 19 flavonoids, 18 alkaloids, and 10 nucleotides and their derivatives. Pathway enrichment analysis further demonstrated significant differences in the metabolic pathways between natto and soybeans, with these 160 differentially expressed metabolites primarily distributed across 40 metabolic pathways. KEGG pathway enrichment analysis of natto metabolites revealed that the majority of these mapped to three key metabolic pathways. Variations in the content of flavonoids and alkaloids, as well as changes in amino acid and saccharide composition and abundance, were found to collectively contribute to the distinctive flavor and biological functionality of natto. Conclusions: This study lays the foundation for future efforts to enhance the quality of natto.
Collapse
Affiliation(s)
- Xiaolong Yin
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaona Wang
- Shandong Freda Biotech Co., Ltd., Jinan 250101, China
| | - Lili Xu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianzhi Zhao
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Can Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianqiang Lin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266200, China
| |
Collapse
|
3
|
Seitz R, Tümen D, Kunst C, Heumann P, Schmid S, Kandulski A, Müller M, Gülow K. Exploring the Thioredoxin System as a Therapeutic Target in Cancer: Mechanisms and Implications. Antioxidants (Basel) 2024; 13:1078. [PMID: 39334737 PMCID: PMC11428833 DOI: 10.3390/antiox13091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024] Open
Abstract
Cells constantly face the challenge of managing oxidants. In aerobic organisms, oxygen (O2) is used for energy production, generating reactive oxygen species (ROS) as byproducts of enzymatic reactions. To protect against oxidative damage, cells possess an intricate system of redox scavengers and antioxidant enzymes, collectively forming the antioxidant defense system. This system maintains the redox equilibrium and enables the generation of localized oxidative signals that regulate essential cellular functions. One key component of this defense is the thioredoxin (Trx) system, which includes Trx, thioredoxin reductase (TrxR), and NADPH. The Trx system reverses oxidation of macromolecules and indirectly neutralizes ROS via peroxiredoxin (Prx). This dual function protects cells from damage accumulation and supports physiological cell signaling. However, the Trx system also shields tumors from oxidative damage, aiding their survival. Due to elevated ROS levels from their metabolism, tumors often rely on the Trx system. In addition, the Trx system regulates critical pathways such as proliferation and neoangiogenesis, which tumors exploit to enhance growth and optimize nutrient and oxygen supply. Consequently, the Trx system is a potential target for cancer therapy. The challenge lies in selectively targeting malignant cells without disrupting the redox equilibrium in healthy cells. The aim of this review article is threefold: first, to elucidate the function of the Trx system; second, to discuss the Trx system as a potential target for cancer therapies; and third, to present the possibilities for inhibiting key components of the Trx system, along with an overview of the latest clinical studies on these inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology, Immunology, and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Germany; (R.S.); (D.T.); (C.K.); (P.H.); (S.S.); (A.K.); (M.M.)
| |
Collapse
|
4
|
Wang X, Meng F, Mao J. Progress of natural sesquiterpenoids in the treatment of hepatocellular carcinoma. Front Oncol 2024; 14:1445222. [PMID: 39081717 PMCID: PMC11286475 DOI: 10.3389/fonc.2024.1445222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Hepatocellular carcinoma is one of the common malignant tumors of digestive tract, which seriously threatens the life of patients due to its high incidence rate, strong invasion, metastasis, and prognosis. At present, the main methods for preventing and treating HCC include medication, surgery, and intervention, but patients frequently encounter with specific adverse reactions or side effects. Many Traditional Chinese medicine can improve liver function, reduce liver cancer recurrence and have unique advantages in the treatment of HCC because of their acting mode of multi-target, multi-pathway, multi-component, and multi-level. Sesquiterpenoids, a class of natural products which are widely present in nature and exhibit good anti-tumor activity, and many of them possess good potential for the treatment of HCC. This article reviewed the anti-tumor activities, natural resources, pharmacological mechanism of natural sesquiterpenoids against HCC, providing the theoretical basis for the prevention and treatment of HCC and a comprehensive understanding of their potential for development of new clinical drugs.
Collapse
Affiliation(s)
- Xiaodong Wang
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Jingxin Mao
- Department of Medical Technology, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
5
|
Abdullah NA, Md Hashim NF, Muhamad Zakuan N, Chua JX. Thioredoxin system in colorectal cancer: Its role in carcinogenesis, disease progression, and response to treatment. Life Sci 2024; 348:122711. [PMID: 38734065 DOI: 10.1016/j.lfs.2024.122711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
The thioredoxin system is essential for many physiological processes, including the maintenance of redox signalling pathways. Alterations in the activity, expression and interactions with other signalling pathways can lead to protective or pathophysiological responses. Thioredoxin and thioredoxin reductase, the two main components of this system, are often overexpressed in cancer, including colorectal cancer. This overexpression is often linked with tumour progression and poor outcomes. This review discusses the role of the Trx system in driving colorectal carcinogenesis and disease progression, as well as the challenges of targeting this system. Additionally, the recent advancements in the development of novel and effective thioredoxin inhibitors for colorectal cancer are also explored.
Collapse
Affiliation(s)
- Nurul Akmaryanti Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nur Fariesha Md Hashim
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Noraina Muhamad Zakuan
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Jia Xin Chua
- Department of Pre-clinical Sciences, University Tunku Abdul Rahman, 43000, Selangor, Malaysia.
| |
Collapse
|
6
|
Rao QR, Rao JB, Zhao M. The specialized sesquiterpenoids produced by the genus Elephantopus L.: Chemistry, biological activities and structure-activity relationship exploration. PHYTOCHEMISTRY 2024; 221:114041. [PMID: 38442848 DOI: 10.1016/j.phytochem.2024.114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The genus Elephantopus L. is a valuable resource rich in sesquiterpenoids with structural diversity and various bioactivities, showing great potential for applications in medicinal field and biological industry. Up to now, over 129 sesquiterpenoids have been isolated and identified from this plant genus, including 114 germacrane-type, 7 guaianolide-type, 5 eudesmane-type, 1 elemanolide-type, and 2 bis-sesquiterpenoids. These sesquiterpenoids were reported to show a diverse range of pharmacological properties, including cytotoxic, anti-tumor, anti-inflammatory, antimicrobial, and antiprotozoal. Consequently, some of them were identified as active scaffolds in the design and development of drugs. Considering that there is currently no overview available that covers the sesquiterpenoids and their biological activities in the Elephantopus genus, this article aims to comprehensively review the chemical structures, biosynthetic pathways, pharmacological properties, and structure-activity relationship of sesquiterpenoids found in the Elephantopus genus, which will establish a theoretical framework that can guide further research and exploration of sesquiterpenoids from Elephantopus plants as promising therapeutic agents.
Collapse
Affiliation(s)
- Qian-Ru Rao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China; Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jian-Bo Rao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Min Zhao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Meng L, Zhang C, Yu P. Treating cancer through modulating exosomal protein loading and function: The prospects of natural products and traditional Chinese medicine. Pharmacol Res 2024; 203:107179. [PMID: 38615876 DOI: 10.1016/j.phrs.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.
Collapse
Affiliation(s)
- Lulu Meng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
8
|
Cao W, Li Y, Zeng Z, Lei S. Terpinen-4-ol Induces Ferroptosis of Glioma Cells via Downregulating JUN Proto-Oncogene. Molecules 2023; 28:4643. [PMID: 37375197 DOI: 10.3390/molecules28124643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
According to previous research, turmeric seeds exhibit anti-inflammatory, anti-malignancy, and anti-aging properties due to an abundance of terpinen-4-ol (T4O). Although it is still unclear how T4O works on glioma cells, limited data exist regarding its specific effects. In order to determine whether or not glioma cell lines U251, U87, and LN229 are viable, CCK8 was used as an assay and a colony formation assay was performed using different concentrations of T4O (0, 1, 2, and 4 μM). The effect of T4O on the proliferation of glioma cell line U251 was detected through the subcutaneous implantation of the tumor model. Through high-throughput sequencing, a bioinformatic analysis, and real-time quantitative polymerase chain reactions, we identified the key signaling pathways and targets of T4O. Finally, for the measurement of the cellular ferroptosis levels, we examined the relationship between T4O, ferroptosis, and JUN and the malignant biological properties of glioma cells. T4O significantly inhibited glioma cell growth and colony formation and induced ferroptosis in the glioma cells. T4O inhibited the subcutaneous tumor proliferation of the glioma cells in vivo. T4O suppressed JUN transcription and significantly reduced its expression in the glioma cells. The T4O treatment inhibited GPX4 transcription through JUN. The overexpression of JUN suppressed ferroptosis in the cells rescued through T4O treatment. Taken together, our data suggest that the natural product T4O exerts its anti-cancer effects by inducing JUN/GPX4-dependent ferroptosis and inhibiting cell proliferation, and T4O will hope-fully serve as a prospective compound for glioma treatment.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Yumei Li
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
9
|
Coy-Barrera E, Ogungbe IV, Schmidt TJ. Natural Products for Drug Discovery in the 21st Century: Innovations for Novel Therapeutics. Molecules 2023; 28:molecules28093690. [PMID: 37175100 PMCID: PMC10180331 DOI: 10.3390/molecules28093690] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Natural products (NPs) from plants, fungi, animals, and microorganisms have historically played important roles in drug discovery [...].
Collapse
Affiliation(s)
- Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Military University Nueva Granada, Nueva Granada Campus, Cajicá 250247, Colombia
| | | | - Thomas J Schmidt
- Institute of Pharmaceutical Biology and Phytochemistry (IPBP), University of Münster, PharmaCampus-Corrensstrasse 48, D-48149 Münster, Germany
| |
Collapse
|
10
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A, Darwiche N. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov 2022; 17:1377-1405. [PMID: 36373806 DOI: 10.1080/17460441.2023.2147920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.
Collapse
Affiliation(s)
- Israa A Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali Youssef
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
11
|
Mehmood T, Pichyangkura R, Muanprasat C. Chitosan Oligosaccharide Prevents Afatinib-Induced Barrier Disruption and Chloride Secretion through Modulation of AMPK, PI3K/AKT, and ERK Signaling in T84 Cells. Polymers (Basel) 2022; 14:polym14204255. [PMID: 36297833 PMCID: PMC9611671 DOI: 10.3390/polym14204255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022] Open
Abstract
Diarrhea is an important adverse effect of epidermal growth factor receptor-tyrosine kinase inhibitors, especially afatinib. Novel antidiarrheal agents are needed to reduce epidermal growth factor receptor-tyrosine kinase inhibitor-associated diarrhea to improve the quality of life and treatment outcome in cancer patients. This study aimed to investigate the anti-diarrheal activity of chitosan oligosaccharide against afatinib-induced barrier disruption and chloride secretion in human intestinal epithelial cells (T84 cells). Chitosan oligosaccharide (100 μg/mL) prevented afatinib-induced barrier disruption determined by changes in transepithelial electrical resistance and FITC-dextran flux in the T84 cell monolayers. In addition, chitosan oligosaccharide prevented afatinib-induced potentiation of cAMP-induced chloride secretion measured by short-circuit current analyses in the T84 cell monolayers. Chitosan oligosaccharide induced the activation of AMPK, a positive regulator of epithelial tight junction and a negative regulator of cAMP-induced chloride secretion. Moreover, chitosan oligosaccharide partially reversed afatinib-induced AKT inhibition without affecting afatinib-induced ERK inhibition via AMPK-independent mechanisms. Collectively, this study reveals that chitosan oligosaccharide prevents the afatinib-induced diarrheal activities in T84 cells via both AMPK-dependent and AMPK-independent mechanisms. Chitosan oligosaccharide represents a promising natural polymer-derived compound for further development of treatment for afatinib-associated diarrheas.
Collapse
Affiliation(s)
- Tahir Mehmood
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok 10400, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan 10540, Thailand
- Correspondence:
| |
Collapse
|