1
|
Liu X, Gong Q, Deng X, Li L, Luo R, Li X, Guo D, Deng F. UHPLC-Q/Orbitrap HRMS combined with spectrum-effect relationship and network pharmacology to discovery the gastrointestinal motility-promoting material basis in Citri Sarcodactylis Fructus. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118926. [PMID: 39393559 DOI: 10.1016/j.jep.2024.118926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The prevalence of gastrointestinal motility disorders (GMD) is increasing and is characterized by long-term recurrence. Citri Sarcodactylis Fructus (CSF), as a traditional Chinese medicine (TCM) known in "regulating qi and harmonizing the stomach", has therapeutic effects on GMD. However, the material basis of its efficacy is not clear. AIM OF THE STUDY The aim of this study was to evaluate the gastrointestinal motility-promoting activity of CSF extracts and to screen their active ingredients and to perform a preliminary validation. METHODS The chemical composition spectrum of different extracts of CSF were established by ultra high-performance liquid chromatography coupled with quadrupole orbitrap high-resolution mass spectrometry (UHPLC-Q/Orbitrap HRMS). The gastrointestinal motility-promoting activities of CSF were investigated by determining the intestinal propulsion rate, gastric emptying rate, acetylcholinesterase activity, and motilin content in L-arginine-induced GMD mice. Spectrum-effect relationship and network pharmacology analysis were used for the screening of potential active ingredients. A zebrafish gastrointestinal motility model traced with Nile Red was established to validate the active ingredients. Molecular docking prediction was used to explore the mechanism of action of the active ingredient. Finally, Western blotting and TUNEL staining were performed to validate the molecular docking predictions. RESULTS In total, 42 shared components were identified. The main active fraction of CSF to promote gastrointestinal motility was 70% ethanol elution fraction. Eleven potential active ingredients were screened by grey correlation analysis, orthogonal partial least squares analysis, and "active ingredient-target" network. Six compounds were confirmed as the pharmacodynamic substances of CSF by zebrafish gastrointestinal motility model, namely, quercetin, kaempferol, isorhamnetin, diosmetin, hesperetin, and 5,7,3'-trihydroxy-6,4',5'-trimethoxyflavone. Molecular docking predictions and Western blotting assays indicated that CSF may act on AKT and MMP9 targets to exert gastrointestinal motility-promoting activity. CONCLUSION This study provided a foundation for elucidating the gastrointestinal motility-promoting activity of CSF and its material basis by integrating spectrum-effect relationship and network pharmacology. It also provided a theoretical basis for quality control of CSF and a new idea for the discovery and validation of pharmacodynamic substances in TCM.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qianqian Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianglan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Longxuan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyi Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xuemin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dale Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Fang Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
Lu C, Yan X, Zhang H, Zhong T, Gui A, Liu Y, Pan L, Shao Q. Integrated metabolomic and transcriptomic analysis reveals biosynthesis mechanism of flavone and caffeoylquinic acid in chrysanthemum. BMC Genomics 2024; 25:759. [PMID: 39097683 PMCID: PMC11297764 DOI: 10.1186/s12864-024-10676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND Chrysanthemum morifolium 'HangBaiJu', a popular medicinal and edible plant, exerts its biological activities primarily through the presence of flavones and caffeoylquinic acids (CQAs). However, the regulatory mechanism of flavone and CQA biosynthesis in the chrysanthemum capitulum remains unclear. RESULTS In this study, the content of flavones and CQAs during the development of chrysanthemum capitulum was determined by HPLC, revealing an accumulation pattern with higher levels at S1 and S2 and a gradual decrease at S3 to S5. Transcriptomic analysis revealed that CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT were key structural genes in flavones and CQAs biosynthesis. Furthermore, weighted gene co-expression correlation network analysis (WGCNA), k-means clustering, correlation analysis and protein interaction prediction were carried out in this study to identify transcription factors (TFs) associated with flavone and CQA biosynthesis, including MYB, bHLH, AP2/ERF, and MADS-box families. The TFs CmERF/PTI6 and CmCMD77 were proposed to act as upstream regulators of CmMYB3 and CmbHLH143, while CmMYB3 and CmbHLH143 might form a complex to directly regulate the structural genes CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT, thereby controlling flavone and CQA biosynthesis. CONCLUSIONS Overall, these findings provide initial insights into the TF regulatory network underlying flavones and CQAs accumulation in the chrysanthemum capitulum, which laid a theoretical foundation for the quality improvement of C. morifolium 'HangBaiJu' and the high-quality development of the industry.
Collapse
Affiliation(s)
- Chenfei Lu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xiaoyun Yan
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Haohao Zhang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Taowei Zhong
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Aijun Gui
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Yuchen Liu
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Lanying Pan
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
3
|
Balde A, Ramya CS, Nazeer RA. A review on current advancement in zebrafish models to study chronic inflammatory diseases and their therapeutic targets. Heliyon 2024; 10:e31862. [PMID: 38867970 PMCID: PMC11167310 DOI: 10.1016/j.heliyon.2024.e31862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/02/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
Chronic inflammatory diseases are caused due to prolonged inflammation at a specific site of the body. Among other inflammatory diseases, bacterial meningitis, chronic obstructive pulmonary disease (COPD), atherosclerosis and inflammatory bowel diseases (IBD) are primarily focused on because of their adverse effects and fatality rates around the globe in recent times. In order to come up with novel strategies to eradicate these diseases, a clear understanding of the mechanisms of the diseases is needed. Similarly, detailed insight into the mechanisms of commercially available drugs and potent lead compounds from natural sources are also important to establish efficient therapeutic effects. Zebrafish is widely accepted as a model to study drug toxicity and the pharmacokinetic effects of the drug. Moreover, researchers use various inducers to trigger inflammatory cascades and stimulate physiological changes in zebrafish. The effect of these inducers contrasts with the type of zebrafish used in the investigation. Hence, a thorough analysis is required to study the current advancements in the zebrafish model for chronic inflammatory disease suppression. This review presents the most common inflammatory diseases, commercially available drugs, novel therapeutics, and their mechanisms of action for disease suppression. The review also provides a detailed description of various zebrafish models for these diseases. Finally, the future prospects and challenges for the same are described, which can help the researchers understand the potency of the zebrafish model and its further exploration for disease attenuation.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Cunnathur Saravanan Ramya
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| |
Collapse
|
4
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
5
|
Hao YZ, Cen LF, Wang T, Yi T, Shi XL, Duan HJ, Dai Z, Zhu HY, Tang JG. The protective effect of 999 XiaoErGanMao granules on the lungs and intestines of influenza A virus-infected mice. PHARMACEUTICAL BIOLOGY 2023; 61:630-638. [PMID: 37036063 PMCID: PMC10088977 DOI: 10.1080/13880209.2023.2195884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Gastrointestinal symptoms are a common complication of influenza virus infection in children, which the gut-lung axis become involved in its biological progress. The protective effect of 999 XiaoErGanMao granules (XEGMG) on multi-organ injury in viral pneumonia remains unclear. OBJECTIVE To investigate the therapeutic effect of XEGMG on lungs and intestines injury in A/FM/1/47 (H1N1) influenza virus-infected mice. MATERIALS AND METHODS Male BALB/c mice were infected with the 2LD50 H1N1 influenza virus and then treated with XEGMG (6 or 12 g/kg) intragastrically once a day for 4 days. The lung and colon samples were then collected for pathological observation, and assays for inflammatory cytokines and intestinal barrier. Mouse feces were collected to evaluate the intestinal microbiota. RESULTS Treating with XEGMG (12 g/kg) can mitigate body weight loss caused by 2LD50 H1N1 infection. It can also reduce lung index and pathological damage with the decreased inflammatory cytokines such as IL-6 and IL-1β. Furthermore, XEGMG (12 g/kg) can maintain the goblet cell number in the colons to protect the intestinal barrier and regulate the major flora such as Firmicutes, Bacteroidetes, and Muribaculaceae back to normal. Meanwhile, the expression of IL-17A in the colon tissues was significantly lower in the group of XEGMG (6, 12 g/kg) compared to H1N1 group. DISCUSSION AND CONCLUSIONS XEGMG can protect against H1N1 invasion involved in gut-lung axis regulation. The results provide new evidence for the protective effect of XEGMG, which is beneficial to vulnerable children.
Collapse
Affiliation(s)
- Yuan-zhen Hao
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Li-feng Cen
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Ting Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Tong Yi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Xun-long Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hui-juan Duan
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Zhi Dai
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen, China
| | - Hai-yan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian-guo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Nayak SPRR, Dhivya LS, R R, Almutairi BO, Arokiyaraj S, Kathiravan MK, Arockiaraj J. Furan based synthetic chalcone derivative functions against gut inflammation and oxidative stress demonstrated in in-vivo zebrafish model. Eur J Pharmacol 2023; 957:175994. [PMID: 37574161 DOI: 10.1016/j.ejphar.2023.175994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Inflammatory Bowel Disease (IBD) is a group of persistent intestinal illnesses resulting from bowel inflammation unrelated to infection. The prevalence of IBD is rising in industrialized countries, increasing healthcare costs. Whether naturally occurring or synthetic, chalcones possess a broad range of biological properties, including anti-inflammatory, anti-microbial, and antioxidant effects. This investigation focuses on DKO7 (E)-3-(4-(dimethylamino)phenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one, a synthesized chalcone with potential anti-inflammatory effects in a zebrafish model of intestinal inflammation induced by Dextran sodium sulfate (DSS). The in vitro study displayed dose-dependent anti-inflammatory as well as antioxidant properties of DKO7. Additionally, DKO7 protected zebrafish larvae against lipid peroxidation, reactive oxygen stress (ROS), and DSS-induced inflammation. Moreover, DKO7 reduced the expression of pro-inflammatory genes, including TNF-α, IL-1β, IL-6, and iNOS. Further, it reduced the levels of nitric oxide (NO) and lactate dehydrogenase (LDH) in the intestinal tissues of adult zebrafish and increased the levels of antioxidant enzymes such as Catalase (CAT) and superoxide dismutase (SOD). The protective effect of DKO7 against chemically (or DSS) induced intestinal inflammation was further verified using histopathological techniques in intestinal tissues. The furan-based chalcone derivative, DKO7, displayed antioxidant and anti-inflammatory properties. Also, DKO7 successfully reverses the DSS-induced intestinal damage in zebrafish. Overall, this study indicates the ability of DKO7 to alleviate DSS-induced gut inflammation in an in-vivo zebrafish.
Collapse
Affiliation(s)
- S P Ramya Ranjan Nayak
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - L S Dhivya
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Reshma R
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Riyadh, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul, 05006, South Korea
| | - M K Kathiravan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
7
|
Chen H, Lei P, Ji H, Ma J, Fang Y, Yu H, Du J, Qu L, Yang Q, Luo L, Zhang K, Wu W, Jin L, Sun D. Escherichia coli Nissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish. Life Sci 2023; 329:121956. [PMID: 37473802 DOI: 10.1016/j.lfs.2023.121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Escherichia coli Nissle 1917 (EcN) has become a research hotspot in inflammatory bowel disease (IBD). It has a strong targeting effect on the colon, and has some therapeutic effect on inflammatory bowel disease. EcN is prepared into EcN ghosts, which also retain EcN's biological characteristics. Consequently, EcN ghosts are used for drug delivery. This study evaluated the safety and efficacy of EcN ghosts as carriers of drugs for treating IBD in zebrafish. Caco-2 cell adhesion experiments and zebrafish intestinal adhesion experiments demonstrated that EcN ghosts was highly adherent to the intestine. Additionally, oral administration of EcN ghosts attenuated dextran sulfate sodium-induced IBD symptoms by inhibiting neutrophil chemotaxis and reactive oxygen species production in larval zebrafish. Because of the unique biological functions of EcN ghosts, it may serve as a strategy for future targeted drug delivery in IBD treatment.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Hao Ji
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Haiyang Yu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Jiao Du
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Linkai Qu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China
| | - Li Luo
- Affiliated Dongguan Hospital, Southern Medical University, Dongguan 523059, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China.
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
8
|
Shi JX, Cheng C, Ruan HN, Li J, Liu CM. Isochlorogenic acid B alleviates lead-induced anxiety, depression and neuroinflammation in mice by the BDNF pathway. Neurotoxicology 2023; 98:1-8. [PMID: 37385299 DOI: 10.1016/j.neuro.2023.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Lead (Pb) can cause neurobehavioral abnormalities. Isochlorogenic acid B (ICAB), a dietary flavonoid found in tea, sweet potato, artichoke, propolis and several plants, exhibited potential neuroprotective properties. In this study, we aimed to investigate the mechanisms of Pb-induced anxiety, depression and neuroinflammation, and the neuroprotective effect of ICAB in mouse brains. We found that ICAB supplementation significantly improved behavioral abnormalities, neuroinflammation and oxidative stress induced by Pb. ICAB attenuated Pb-induced anxiety and depression behavior in mice, as indicated by decreasing the duration of immobility in tail suspension test and increasing the crossing number, rearing number and time in center in open field test. Accordingly, ICAB inhibited oxidative stress by decreasing malondialdehyde (MDA) level and increasing the antioxidant enzyme activity. ICAB also inhibited Pb-induced inflammation in brain, as indicated by decreasing the tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) levels. ICAB increased the expression levels of brain derived neurotrophic factor (BDNF) and the phosphorylation of cAMP-responsive element binding protein (CREB), phosphoinositide 3-kinases-protein kinase B (PI3K/AKT). Furthermore, ICAB decreased the levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), glycogen synthase kinase-3 beta (GSK-3β) and p38. Collectively, this study demonstrated that ICAB improved Pb-induced anxiety, depression, neuroinflammation and oxidative stress by regulating the BDNF signaling pathway.
Collapse
Affiliation(s)
- Jia-Xue Shi
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Chao Cheng
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Hai-Nan Ruan
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China
| | - Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No.101, Shanghai Road, Tongshan New Area, 21-1116 Xuzhou City, Jiangsu Province, PR China.
| |
Collapse
|
9
|
Priya PS, Murugan R, Almutairi BO, Arokiyaraj S, Shanjeev P, Arockiaraj J. Delineating the protective action of cordycepin against cadmium induced oxidative stress and gut inflammation through downregulation of NF-κB pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104246. [PMID: 37595934 DOI: 10.1016/j.etap.2023.104246] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/03/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Cadmium (Cd) exposure is known to cause gut inflammation. In this study, we investigated the protective effects of cordycepin, a natural compound with pharmacological properties, against gut inflammation induced by Cd exposure. Using zebrafish larvae and colon cell line models, we examined the impact of cordycepin on Cd-induced toxicity and inflammation. Zebrafish larvae were exposed to Cd (2 µg/mL) and treated with different concentrations of cordycepin (12.5, 25 and 50 µg/mL). Cordycepin treatment significantly reduced Cd-induced embryotoxicity in zebrafish larvae. It also alleviated Cd-induced oxidative stress by reducing reactive oxygen species (ROS), lipid peroxidation and apoptosis. Furthermore, cordycepin treatment normalized the levels of liver-related biomarkers affected due to Cd exposure. Additionally, cordycepin (50 µg/mL) demonstrated a significant reduction in Cd bioaccumulation and downregulated the expression of inflammatory genes in both zebrafish larval gut and colon cell lines. These findings suggest that cordycepin could be an effective agent against Cd-induced gut inflammation.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India
| | - Raghul Murugan
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India
| | - Bader O Almutairi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Selvaraj Arokiyaraj
- Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - P Shanjeev
- SG's Supreme Organics, Plot 148, Sri Valli Nagar, Nandhivaram Village, Guduvancherry, Chennai 603202, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu District, Kattankulatur 603203, Tamil Nadu, India.
| |
Collapse
|
10
|
Yoon CH, Jang HJ, Ryu JS, Ko JH, Ahn KS, Oh SR, Oh JH, Chung JH, Oh JY. 1,5-Dicaffeoylquinic acid from Pseudognaphalium affine ameliorates dry eye disease via suppression of inflammation and protection of the ocular surface. Ocul Surf 2023; 29:469-479. [PMID: 37390940 DOI: 10.1016/j.jtos.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
PURPOSE Pseudognaphalium affine (P. affine), a medicinal plant, has long been used to treat various diseases due to its astringent and vulnerary effects. These therapeutic benefits are largely attributed to high contents of phytochemicals, such as flavonoids and polyphenols, that have anti-inflammatory and tissue-protective activities. Herein, we investigated the potential of dicaffeoylquinic acids (diCQAs), polyphenols from P. affine, as a novel treatment for dry eye disease (DED). METHODS We isolated 1,5-, 3,4-, 3,5- and 4,5-diCQAs from the P. affine methanol extract, and tested the effects of diCQA isomers in cultures of human corneal epithelial cells (CECs) under desiccating hyperosmolar stress and in two mouse models for DED: desiccating environmental stress-induced DED and the NOD.B10-H2b mouse model of ocular Sjögren's syndrome. RESULTS Initial screening showed that, among the diCQAs, 1,5-diCQA significantly inhibited apoptosis and enhanced viability in cultures of CECs under hyperosmolar stress. Moreover, 1,5-diCQA protected CECs by promoting proliferation and downregulating inflammatory activation. Subsequent studies with two mouse models of DED revealed that topical 1,5-diCQA administration dose-dependently decreased corneal epithelial defects and increased tear production while repressing inflammatory cytokines and T cell infiltration on the ocular surface and in the lacrimal gland. 1,5-diCQA was more effective in alleviating DED, as compared with two commercially-available dry eye treatments, 0.05% cyclosporine and 0.1% sodium hyaluronate eye drops. CONCLUSIONS Together, our results demonstrate that 1,5-diCQA isolated from P. affine ameliorates DED through protection of corneal epithelial cells and suppression of inflammation, thus suggesting a novel DED therapeutic strategy based on natural compounds.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyun-Jae Jang
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea; Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jung Hwa Ko
- Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Kyung-Seop Ahn
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea
| | - Sei-Ryang Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea; Natural Product Central Bank, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheonju, 28116, South Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
11
|
Jin C, Liu J, Jin R, Yao Y, He S, Lei M, Peng X. Linarin ameliorates dextran sulfate sodium-induced colitis in C57BL/6J mice via the improvement of intestinal barrier, suppression of inflammatory responses and modulation of gut microbiota. Food Funct 2022; 13:10574-10586. [PMID: 36155608 DOI: 10.1039/d2fo02128e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Linarin is a natural flavonoid compound found in Chrysanthemum indicum, Mentha species and other plants with various biological activities. The study aimed to investigate the protective effect of linarin supplementation on dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice and its potential mechanisms. The results showed that doses of linarin at 25 and 50 mg kg-1 day-1 alleviated the DSS-induced histopathological damage, and improved the mucosal layer and intestinal barrier function. Importantly, Linarin significantly suppressed the levels of myeloperoxidase activity and pro-inflammatory cytokines (IL-6, TNF-α, IFN-γ and IL-1β) in the colon, and enhanced the mRNA level of anti-inflammatory cytokine (IL-10). Moreover, 50 mg kg-1 day-1 linarin reversed the gut microbiota damaged by DSS, including Alistipes, Rikenella and Clostridia UCG-014_norank. Linarin also partly increased the relative abundance of short-chain fatty acids (SCFAs)-producing bacteria, including Lactobacillus, Roseburia, Parabacteroides and Blautia, and elevated the contents of SCFAs. Collectively, linarin attenuates DSS-induced colitis in mice, suggesting that linarin may be a promising nutritional strategy for reducing inflammatory bowel disease.
Collapse
Affiliation(s)
- Chengni Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jiayu Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Ruyi Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yanpeng Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Silan He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Min Lei
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xiaoli Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
12
|
Hao DC, Song Y, Xiao P, Zhong Y, Wu P, Xu L. The genus Chrysanthemum: Phylogeny, biodiversity, phytometabolites, and chemodiversity. FRONTIERS IN PLANT SCIENCE 2022; 13:973197. [PMID: 36035721 PMCID: PMC9403765 DOI: 10.3389/fpls.2022.973197] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/18/2022] [Indexed: 05/31/2023]
Abstract
The ecologically and economically important genus Chrysanthemum contains around 40 species and many hybrids and cultivars. The dried capitulum of Chrysanthemum morifolium (CM) Ramat. Tzvel, i.e., Flos Chrysanthemi, is frequently used in traditional Chinese medicine (TCM) and folk medicine for at least 2,200 years. It has also been a popular tea beverage for about 2,000 years since Han Dynasty in China. However, the origin of different cultivars of CM and the phylogenetic relationship between Chrysanthemum and related Asteraceae genera are still elusive, and there is a lack of comprehensive review about the association between biodiversity and chemodiversity of Chrysanthemum. This article aims to provide a synthetic summary of the phylogeny, biodiversity, phytometabolites and chemodiversity of Chrysanthemum and related taxonomic groups, focusing on CM and its wild relatives. Based on extensive literature review and in light of the medicinal value of chrysanthemum, we give some suggestions for its relationship with some genera/species and future applications. Mining chemodiversity from biodiversity of Chrysanthemum containing subtribe Artemisiinae, as well as mining therapeutic efficacy and other utilities from chemodiversity/biodiversity, is closely related with sustainable conservation and utilization of Artemisiinae resources. There were eight main cultivars of Flos Chrysanthemi, i.e., Hangju, Boju, Gongju, Chuju, Huaiju, Jiju, Chuanju and Qiju, which differ in geographical origins and processing methods. Different CM cultivars originated from various hybridizations between multiple wild species. They mainly contained volatile oils, triterpenes, flavonoids, phenolic acids, polysaccharides, amino acids and other phytometabolites, which have the activities of antimicrobial, anti-viral, antioxidant, anti-aging, anticancer, anti-inflammatory, and closely related taxonomic groups could also be useful as food, medicine and tea. Despite some progresses, the genetic/chemical relationships among varieties, species and relevant genera have yet to be clarified; therefore, the roles of pharmacophylogeny and omics technology are highlighted.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environment and Chemical Engineering, Biotechnology Institute, Dalian Jiaotong University, Dalian, China
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Yanjun Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yi Zhong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peiling Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
13
|
Zheng L, Ji YY, Dai YC, Wen XL, Wu SC. Network pharmacology and molecular docking reveal zedoary turmeric-trisomes in Inflammatory bowel disease with intestinal fibrosis. World J Clin Cases 2022; 10:7674-7685. [PMID: 36158488 PMCID: PMC9372848 DOI: 10.12998/wjcc.v10.i22.7674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a complex chronic IBD that is closely associated with risk factors such as environment, diet, medications and lifestyle that may influence the host microbiome or immune response to antigens. At present, with the increasing incidence of IBD worldwide, it is of great significance to further study the pathogenesis of IBD and seek new therapeutic targets. Traditional Chinese medicine (TCM) treatment of diseases is characterized by multiple approaches and multiple targets and has a long history of clinical application in China. The mechanism underlying the effect of zedoary turmeric-trisomes on inducing mucosal healing in IBD is not clear.
AIM To explore the effective components and potential mechanism of zedoary turmeric-trisomes in the treatment of IBD with intestinal fibrosis using network pharmacology and molecular docking techniques.
METHODS The chemical constituents and targets of Rhizoma zedoary and Rhizoma sanarum were screened using the TCMSP database. The GeneCards database was searched to identify targets associated with intestinal fibrosis in IBD. The intersection of chemical component targets and disease targets was obtained using the Venny 2.1 online analysis platform, and the common targets were imported into the STRING 11.0 database to construct a protein interaction regulatory network. A “zedoary turmeric-trisomes-chemical composition-target-disease” network diagram was subsequently constructed using Cytoscape 3.7.2 software, and the topological properties of the network were analyzed using the “Network Analysis” plug-in. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the common targets were performed using the DAVID 6.8 database to elucidate the mechanism of zedoary turmeric-trisomes in the treatment of IBD. Subsequently, molecular docking of the compounds and targets with the highest intermediate values in the “zedoary turmeric-trisomes-chemical composition-target-disease” network was performed using Sybyl-x 2.1.1 software.
RESULTS A total of 5 chemical components with 60 targets were identified, as well as 3153 targets related to IBD and 44 common targets. The protein-protein interaction network showed that the core therapeutic targets included JUN, MAPK14, CASP3, AR, and PTGS2. The GO enrichment analysis identified 759 items, and the KEGG enrichment analysis yielded 52 items, including the cancer pathway, neuroactive ligand-receptor interaction, hepatitis B, and the calcium signaling pathway, reflecting the complex biological processes of the multicomponent, multitarget and multipathway treatment of diseases with zedoary turmeric-trisomes. Molecular docking showed that the compound bonded with the target through hydrogen bond interactions and exhibited good docking activity.
CONCLUSION This study identified the potential mechanism of action of zedoary turmeric-trisomes in the treatment of inflammatory bowel fibrosis using network pharmacology and molecular docking technology, providing a scientific basis for further expansion of their clinical use.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi’an 730000, Shaanxi Province, China
| | - Yong-Yi Ji
- Department of Neurology, Xi’an Hospital of Traditional Chinese Medicine, Xi’an 710021, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| | - Shi-Cheng Wu
- Department of Proctology, Gansu Academy of Traditional Chinese Medicine, GanSu Hospital of Traditional Chinese Medicine, Lanzhou 730050, Gansu Province, China
| |
Collapse
|