1
|
Maikhunthod B, Chaipayang S, Jittmittraphap A, Thippornchai N, Boonchuen P, Tittabutr P, Eumkeb G, Sabuakham S, Rungrotmongkol T, Mahalapbutr P, Leaungwutiwong P, Teaumroong N, Tanthanuch W. Exploring the therapeutic potential of Thai medicinal plants: in vitro screening and in silico docking of phytoconstituents for novel anti-SARS-CoV-2 agents. BMC Complement Med Ther 2024; 24:274. [PMID: 39030504 PMCID: PMC11264683 DOI: 10.1186/s12906-024-04586-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 07/10/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The high virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for coronavirus disease 2019 (COVID-19), has triggered global health and economic concerns. The absence of specific antiviral treatments and the side effects of repurposed drugs present persistent challenges. This study explored a promising antiviral herbal extract against SARS-CoV-2 from selected Thai medicinal plants based on in vitro efficacy and evaluated its antiviral lead compounds by molecular docking. METHODS Twenty-two different ethanolic-aqueous crude extracts (CEs) were rapidly screened for their potential activity against porcine epidemic diarrhea virus (PEDV) as a surrogate using a plaque reduction assay. Extracts achieving ≥ 70% anti-PEDV efficacy proceeded to the anti-SARS-CoV-2 activity test using a 50% tissue culture infectious dose method in Vero E6 cells. Molnupiravir and extract-free media served as positive and negative controls, respectively. Potent CEs underwent water/ethyl acetate fractionation to enhance antiviral efficacy, and the fractions were tested for anti-SARS-CoV-2 performance. The fraction with the highest antiviral potency was identified using liquid chromatography-high-resolution mass spectrometry (LC-HRMS). Molecular docking analyses of these compounds against the main protease (Mpro) of SARS-CoV-2 (6LU7) were performed to identify antiviral lead molecules. The top three hits were further evaluated for their conformational stability in the docked complex using molecular dynamics (MD) simulation. RESULTS The water fraction of mulberry (Morus alba Linn.) leaf CE (WF-MLCE) exhibited the most potent anti-SARS-CoV-2 efficacy with low cytotoxicity profile (CC50 of ~ 0.7 mg/mL), achieving 99.92% in pre-entry mode and 99.88% in postinfection treatment mode at 0.25 mg/mL. Flavonoids and conjugates were the predominant compounds identified in WF-MLCE. Molecular docking scores of several flavonoids against SARS-CoV-2 Mpro demonstrated their superior antiviral potency compared to molnupiravir. Remarkably, myricetin-3-O-β-D-galactopyranoside, maragrol B, and quercetin 3-O-robinobioside exhibited binding energies of ~ - 9 kcal/mol. The stability of each ligand-protein complex of these compounds with the Mpro system showed stability during MD simulation. These three molecules were pronounced as antiviral leads of WF-MLCE. Given the low cytotoxicity and high antiviral potency of WF-MLCE, it holds promise as a candidate for future therapeutic development for COVID-19 treatment, especially considering its economic and pharmacological advantages.
Collapse
Affiliation(s)
- Bussayarat Maikhunthod
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sukanya Chaipayang
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand
| | - Akanitt Jittmittraphap
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Narin Thippornchai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Panlada Tittabutr
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Griangsak Eumkeb
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Sahachai Sabuakham
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Neung Teaumroong
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| | - Waraporn Tanthanuch
- Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Abbas Z, Tong Y, Wang J, Zhang J, Wei X, Si D, Zhang R. Potential Role and Mechanism of Mulberry Extract in Immune Modulation: Focus on Chemical Compositions, Mechanistic Insights, and Extraction Techniques. Int J Mol Sci 2024; 25:5333. [PMID: 38791372 PMCID: PMC11121110 DOI: 10.3390/ijms25105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Mulberry is a rapidly growing plant that thrives in diverse climatic, topographical, and soil types, spanning temperature and temperate countries. Mulberry plants are valued as functional foods for their abundant chemical composition, serving as a significant reservoir of bioactive compounds like proteins, polysaccharides, phenolics, and flavonoids. Moreover, these compounds displayed potent antioxidant activity by scavenging free radicals, inhibiting reactive oxygen species generation, and restoring elevated nitric oxide production induced by LPS stimulation through the downregulation of inducible NO synthase expression. Active components like oxyresveratrol found in Morus demonstrated anti-inflammatory effects by inhibiting leukocyte migration through the MEK/ERK signaling pathway. Gallic and chlorogenic acids in mulberry leaves (ML) powder-modulated TNF, IL-6, and IRS1 proteins, improving various inflammatory conditions by immune system modulation. As we delve deeper into understanding its anti-inflammatory potential and how it works therapeutically, it is crucial to refine the extraction process to enhance the effectiveness of its bioactive elements. Recent advancements in extraction techniques, such as solid-liquid extraction, pressurized liquid extraction, superficial fluid extraction, microwave-assisted extraction, and ultrasonic-assisted extraction, are being explored. Among the extraction methods tested, including Soxhlet extraction, maceration, and ultrasound-assisted extraction (UAE), UAE demonstrated superior efficiency in extracting bioactive compounds from mulberry leaves. Overall, this comprehensive review sheds light on the potential of mulberry as a natural immunomodulatory agent and provides insights into its mechanisms of action for future research and therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rijun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Z.A.); (Y.T.); (J.W.); (J.Z.); (X.W.); (D.S.)
| |
Collapse
|
3
|
Wang Y, Ai Q, Gu M, Guan H, Yang W, Zhang M, Mao J, Lin Z, Liu Q, Liu J. Comprehensive overview of different medicinal parts from Morus alba L.: chemical compositions and pharmacological activities. Front Pharmacol 2024; 15:1364948. [PMID: 38694910 PMCID: PMC11061381 DOI: 10.3389/fphar.2024.1364948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/04/2024] Open
Abstract
Morus alba L., a common traditional Chinese medicine (TCM) with a centuries-old medicinal history, owned various medicinal parts like Mori folium, Mori ramulus, Mori cortex and Mori fructus. Different medical parts exhibit distinct modern pharmacological effects. Mori folium exhibited analgesic, anti-inflammatory, hypoglycemic action and lipid-regulation effects. Mori ramulus owned anti-bacterial, anti-asthmatic and diuretic activities. Mori cortex showed counteraction action of pain, inflammatory, bacterial, and platelet aggregation. Mori fructus could decompose fat, lower blood lipids and prevent vascular sclerosis. The main chemical components in Morus alba L. covered flavonoids, phenolic compounds, alkaloids, and amino acids. This article comprehensively analyzed the recent literature related to chemical components and pharmacological actions of M. alba L., summarizing 198 of ingredients and described the modern activities of different extracts and the bioactive constituents in the four parts from M. alba L. These results fully demonstrated the medicinal value of M. alba L., provided valuable references for further comprehensive development, and layed the foundation for the utilization of M. alba L.
Collapse
Affiliation(s)
- Yumei Wang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qing Ai
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Meiling Gu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Hong Guan
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Wenqin Yang
- Office of Academic Research, Qiqihar Medical University, Qiqihar, China
| | - Meng Zhang
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
- School of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jialin Mao
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Zhao Lin
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Jicheng Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
4
|
Sun C, Wang Z, Tan Y, Li L, Zhou F, Hu SA, Yan QW, Li LH, Pei G. Mechanism of Mulberry Leaves and Black Sesame in Alleviating Slow Transit Constipation Revealed by Multi-Omics Analysis. Molecules 2024; 29:1713. [PMID: 38675536 PMCID: PMC11051911 DOI: 10.3390/molecules29081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Traditional Chinese medicine (TCM) possesses the potential of providing good curative effects with no side effects for the effective management of slow transit constipation (STC), an intestinal disease characterized by colonic dyskinesia. Mulberry leaves (Morus alba L.) and black sesame (Sesamum indicum L.), referred to as SH, are processed and conditioned as per standardized protocols. SH has applications as food and medicine. Accordingly, we investigated the therapeutic potential of SH in alleviating STC. The analysis of SH composition identified a total of 504 compounds. The intervention with SH significantly improved intestinal motility, reduced the time for the first black stool, increased antioxidant activity, and enhanced water content, thereby effectively alleviating colon damage caused by STC. Transcriptome analysis revealed the SH in the treatment of STC related to SOD1, MUC2, and AQP1. The analysis of 16S rRNA gene sequences indicated notable differences in the abundance of 10 bacteria between the SH and model. Metabolomic analysis further revealed that SH supplementation increased the levels of nine metabolites associated with STC. Integrative analysis revealed that SH modulated amino acid metabolism, balanced intestinal flora, and targeted key genes (i.e., SOD1, MUC2, AQP1) to exert its effects. SH also inhibited the AQP1 expression and promoted SOD1 and MUC2 expression.
Collapse
Affiliation(s)
- Chen Sun
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Zheng Wang
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Yang Tan
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feng Zhou
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shi-An Hu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Qin-Wen Yan
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Lin-Hui Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Gang Pei
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (C.S.); (Y.T.); (L.L.); (F.Z.); (S.-A.H.); (Q.-W.Y.); (L.-H.L.)
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Fauzi A, Kifli N, Noor MHM, Hamzah H, Azlan A. Hematological, biochemical, and histopathological evaluation of the Morus alba L. leaf extract from Brunei Darussalam: Acute toxicity study in ICR mice. Open Vet J 2024; 14:750-758. [PMID: 38682142 PMCID: PMC11052622 DOI: 10.5455/ovj.2024.v14.i3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/07/2024] [Indexed: 05/01/2024] Open
Abstract
Background Studies have reported that the phytochemical content of Mulberry (Morus alba Linn.) is influenced by the area where it grows. On the other hand, the study of the bioactivity and toxicity of mulberry leaves from Brunei Darussalam still needs to be completed. In particular, the investigation regarding the safe dose for Mulberry's application from Brunei Darussalam has yet to be studied. Hence, toxicity information must be considered even though the community has used it for generations. Aim This study investigated Morus alba ethanolic leaf extract (MAE) to observe the acute toxicity in mice. Methods In particular, this study utilized 12 female Institute of Cancer Research mice, 8 weeks old, divided into 2 groups: the control group and the MAE group (2,000 mg/kg single dose). Physiology, hematology, biochemistry, and histology were analyzed during the study. Results The examination result indicated no mortality and behavioral changes throughout the testing period. However, the mice developed mild anemia and leukopenia, followed by decreased numbers of neutrophils, lymphocytes, and monocytes. In addition, the mice developed a mild hepatocellular injury, indicated by significant (p < 0.05) elevations of both alanine aminotransferase (ALT) and aspartate transaminase (AST). The histopathological findings of the liver were also consistent with the increment of ALT and AST, indicating mild hepatocellular necrosis through the eosinophilic cytoplasm and pyknosis (p > 0.05). Conclusion It was evident that a single oral administration of MAE was not lethal for mice (LD50, which was higher than 2,000 mg/kg). However, the administration of high doses of MAE must be carefully considered.
Collapse
Affiliation(s)
- Ahmad Fauzi
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Brawijaya, Malang, Indonesia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Mohd. Hezmee Mohd. Noor
- Department of Veterinary Pre-clinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia UPM, Serdang, Malaysia
| | - Azrina Azlan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
6
|
Zhumabayev N, Zhakipbekov K, Zhumabayev N, Datkhayev U, Tulemissov S. Phytochemical studies of white mulberry fruits (Morus alba L.). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:807-815. [PMID: 37493677 DOI: 10.1007/s00210-023-02634-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
Medicinal preparations made from plant materials have been widely used for many years due to their high pharmacological efficacy and safety of use. Therefore, a study of white mulberry fruits (Morus alba L.) for the content of substances is very important for the pharmaceutical industry such as flavonoids, alkaloids, polysaccharides, minerals, vitamins, and amino acids. White mulberry has a wide distribution area around the world, including in Kazakhstan, especially in the southern regions of the country (Almaty, Zhambyl, and Turkestan regions). The composition of the fruits of this plant is significantly influenced by the area where the trees grow, and therefore, the establishment of a specific composition of biologically active substances is very important. In the course of this study, such methods as gas chromatography were used-mass spectrometry of an extract obtained using carbon dioxide under subcritical conditions, atomic absorption, gravimetric, and spectrophotometric methods. As a result, for the first time in Kazakhstan, the composition of white mulberry fruits (Morus alba L.), namely, biologically active substances, has been identified, such as alkaloids, flavonoids, vitamins, macro- and microelements, and amino acids and fatty acids; in addition, the percentage composition of the above compounds has been determined. The results of the study show a comparative analysis of the component composition of white mulberry fruits (Morus alba L.) in various areas of tree growth, including outside of Kazakhstan. The obtained data testify to the great possibilities of using this raw material in medicine, pharmacology, and the food industry.
Collapse
Affiliation(s)
- Nurdaulet Zhumabayev
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tole Bi Str., 050000, Almaty, Republic of Kazakhstan
| | - Kairat Zhakipbekov
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tole Bi Str., 050000, Almaty, Republic of Kazakhstan.
| | - Narbek Zhumabayev
- Department of Organization and Management of Pharmaceutical Business, South Kazakhstan Medical Academy, 160019, 1 Al-Farabi Sq., Shymkent, Republic of Kazakhstan
| | - Ubaidilla Datkhayev
- Department of Organization and Management and Economics of Pharmacy and Clinical Pharmacy, Asfendiyarov Kazakh National Medical University, 94 Tole Bi Str., 050000, Almaty, Republic of Kazakhstan
| | - Saken Tulemissov
- LLP "Zhanga Shipa", 17/1 Dysenbai Altynbekov Str., 160700, Shymkent, Republic of Kazakhstan
| |
Collapse
|
7
|
Truzzi E, Marchetti L, Gibertini G, Benvenuti S, Cappellozza S, Giovannini D, Saviane A, Sirri S, Pinetti D, Assirelli A, Bertelli D. Phytochemical and functional characterization of cultivated varieties of Morus alba L. fruits grown in Italy. Food Chem 2024; 431:137113. [PMID: 37604000 DOI: 10.1016/j.foodchem.2023.137113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Morus alba L. fruits are considered functional foods with an important nutritional value for their high content of polyphenols. Therefore, the type and level of phytochemicals of the soroses from 13 M. alba cultivars grown in Italy were characterized due to the lack of data available about their nutraceutical properties. Mature M. alba fruits exhibited variable polyphenol, flavonoid, anthocyanin, proanthocyanins, and 1-deoxynojirimycin contents which resulted in different antioxidant and α-glucosidase inhibitory activities. Regression models built on UHPLC-HRMS results revealed a strong correlation between the expression of quercetin derivatives, cyanidin 3-O-glucoside, caffeoyl methyl quinates, and 5,5'-dehydrodivanillic acid, and the biological activity of each fruit. On another note, principal component analysis revealed that the quantity of caffeoyl/dicaffeoyl methyl quinate, caffeoylquinic acids, and quercetin derivatives decreased during ripening. The results on the compositional and functional characterization of mature M. alba fruits might improve their consumption and economic value in Italy.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi, 103, 41125 Modena, Italy.
| | - Lucia Marchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy
| | - Giada Gibertini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro di Ricerca Agricoltura e Ambiente, Laboratorio di Gelsibachicoltura, Via Eulero, 6a, 35143 Padova (PD), Italy
| | - Daniela Giovannini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro per la Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via La Canapona 1 bis, 47121 Forlì (FC), Italy
| | - Alessio Saviane
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro di Ricerca Agricoltura e Ambiente, Laboratorio di Gelsibachicoltura, Via Eulero, 6a, 35143 Padova (PD), Italy
| | - Sandro Sirri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro per la Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via La Canapona 1 bis, 47121 Forlì (FC), Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Via G. Campi, 213/A, 41125 Modena (MO), Italy
| | - Alberto Assirelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via ella Pascolare 16, 00016 Monterotondo (Rm), Italy
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy
| |
Collapse
|
8
|
Zhao Q, Wang Z, Wang X, Yan X, Guo Q, Yue Y, Yue T, Yuan Y. The bioaccessibility, bioavailability, bioactivity, and prebiotic effects of phenolic compounds from raw and solid-fermented mulberry leaves during in vitro digestion and colonic fermentation. Food Res Int 2023; 165:112493. [PMID: 36869449 DOI: 10.1016/j.foodres.2023.112493] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
The bioaccessibility and bioactivity of phenolic compounds in mulberry leaves (MLs) relate to the digestion process. This study was aimed at investigating the release of phenolic compounds, as well as the potential bioactivities of raw MLs (UF-MLs) and solid-fermented MLs (F-MLs) during in vitro digestion and colonic fermentation. Antioxidant activities and phenolic compounds released in the digested extracts are shown in decreasing order of location: intestinal > oral > gastric. The bioavailability of total phenolics and flavonoids in F-MLs were 10.14 ± 1.81 % and 6.66 ± 0.55 %, respectively. There was no significant difference in the inhibitory activity of α-glucosidase during gastrointestinal digestion. For colonic fermentation, the highest free radical-scavenging ability of DPPH and ABTS was found at 24 h and 48 h, respectively. The release of phenolic compounds was not significantly different after 48 h of colonic fermentation. LC-MS/MS showed that liquiritigenin, apigenin, chlorogenic acid, and ferulic acid were the major compounds released in the small intestine digestion, and valerenic acid was the primary colonic metabolite. 16S rDNA showed that UF-MLs promoted the growth of Bifidobacterium and F-MLs lowered the Firmicutes-to-Bacteroidetes ratio. Furthermore, F-MLs increased the concentration of acetic acids (25.75 ± 0.86 mM) after 24 h of colonic fermentation. The results of this study indicated that F-MLs exhibit relatively higher phenolic bioaccessibility, antioxidant activities, and SCFA production and are a promising candidate as a health food supplement.
Collapse
Affiliation(s)
- Qiannan Zhao
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Zewei Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Xiaohai Yan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Qi Guo
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China
| | - Yuan Yue
- Xi'an Gaoxin, No. 1, High School, Xi'an 710,000, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China; College of Food Science and Techonology, Northwest University, Xi'an 710069, China.
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A & F University, Yangling 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (Yangling), Ministry of Agriculture, Yangling 712100, China.
| |
Collapse
|
9
|
Antioxidant Effect of Nanoparticles Composed of Zein and Orange (Citrus sinensis) Extract Obtained by Ultrasound-Assisted Extraction. MATERIALS 2022; 15:ma15144838. [PMID: 35888305 PMCID: PMC9320882 DOI: 10.3390/ma15144838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023]
Abstract
In the present research, an orange extract (OE) was obtained and encapsulated in a zein matrix for its subsequent physicochemical characterization and evaluation of its antioxidant capacity. The OE consists of phenolic compounds and flavonoids extracted from orange peel (Citrus sinensis) by ultrasound-assisted extraction (UAE). The results obtained by dynamic light scattering (DLS) and scanning electron microscopy (SEM) indicated that zein nanoparticles with orange extract (NpZOE) presented a nanometric size and spherical shape, presenting a hydrodynamic diameter of 159.26 ± 5.96 nm. Furthermore, ζ-potential evolution and Fourier transform infrared spectroscopy (FTIR) techniques were used to evaluate the interaction between zein and OE. Regarding antioxidant activity, ABTS and DPPH assays indicated no significant differences at high concentrations of orange peel extract and NpZOE; however, NpZOE was more effective at low concentrations. Although this indicates that ultrasonication as an extraction method effectively obtains the phenolic compounds present in orange peels, the nanoprecipitation method under the conditions used allowed us to obtain particles in the nanometric range with positive ζ-potential. On the other hand, the antioxidant capacity analysis indicated a high antioxidant capacity of both OE and the NpZOE. This study presents the possibility of obtaining orange extracts by ultrasound and coupling them to zein-based nanoparticulate systems to be applied as biomedical materials functionalized with antioxidant substances of pharmaceutical utility.
Collapse
|