1
|
König S, Schork K, Eisenacher M. Observations from the Proteomics Bench. Proteomes 2024; 12:6. [PMID: 38390966 PMCID: PMC10885119 DOI: 10.3390/proteomes12010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Many challenges in proteomics result from the high-throughput nature of the experiments. This paper first presents pre-analytical problems, which still occur, although the call for standardization in omics has been ongoing for many years. This article also discusses aspects that affect bioinformatic analysis based on three sets of reference data measured with different orbitrap instruments. Despite continuous advances in mass spectrometer technology as well as analysis software, data-set-wise quality control is still necessary, and decoy-based estimation, although challenged by modern instruments, should be utilized. We draw attention to the fact that numerous young researchers perceive proteomics as a mature, readily applicable technology. However, it is important to emphasize that the maximum potential of the technology can only be realized by an educated handling of its limitations.
Collapse
Affiliation(s)
- Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| | - Karin Schork
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr-University Bochum, 44801 Bochum, Germany
- Core Unit for Bioinformatics (CUBiMed.RUB), Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
- Center for Protein Diagnostics (PRODI), Medical Proteome Analysis, Ruhr-University Bochum, 44801 Bochum, Germany
- Core Unit for Bioinformatics (CUBiMed.RUB), Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Peliciari-Garcia RA, de Barros CF, Secio-Silva A, de Barros Peruchetti D, Romano RM, Bargi-Souza P. Multi-omics Investigations in Endocrine Systems and Their Clinical Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:187-209. [PMID: 38409422 DOI: 10.1007/978-3-031-50624-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Innovative techniques such as the "omics" can be a powerful tool for the understanding of intracellular pathways involved in homeostasis maintenance and identification of new potential therapeutic targets against endocrine-metabolic disorders. Over the last decades, proteomics has been extensively applied in the study of a wide variety of human diseases, including those involving the endocrine system. Among the most endocrine-related disorders investigated by proteomics in humans are diabetes mellitus and thyroid, pituitary, and reproductive system disorders. In diabetes, proteins implicated in insulin signaling, glucose metabolism, and β-cell activity have been investigated. In thyroid diseases, protein expression alterations were described in thyroid malignancies and autoimmune thyroid illnesses. Additionally, proteomics has been used to investigate the variations in protein expression in adrenal cancers and conditions, including Cushing's syndrome and Addison's disease. Pituitary tumors and disorders including acromegaly and hypopituitarism have been studied using proteomics to examine changes in protein expression. Reproductive problems such as polycystic ovarian syndrome and endometriosis are two examples of conditions where alterations in protein expression have been studied using proteomics. Proteomics has, in general, shed light on the molecular underpinnings of many endocrine-related illnesses and revealed promising biomarkers for both their detection and treatment. The capacity of proteomics to thoroughly and objectively examine complex protein mixtures is one of its main benefits. Mass spectrometry (MS) is a widely used method that identifies and measures proteins based on their mass-to-charge ratio and their fragmentation pattern. MS can perform the separation of proteins according to their physicochemical characteristics, such as hydrophobicity, charge, and size, in combination with liquid chromatography. Other proteomics techniques include protein arrays, which enable the simultaneous identification of several proteins in a single assay, and two-dimensional gel electrophoresis (2D-DIGE), which divides proteins depending on their isoelectric point and molecular weight. This chapter aims to summarize the most relevant proteomics data from targeted tissues, as well as the daily rhythmic variation of relevant biomarkers in both physiological and pathophysiological conditions within the involved endocrine system, especially because the actual modern lifestyle constantly imposes a chronic unentrained condition, which virtually affects all the circadian clock systems within human's body, being also correlated with innumerous endocrine-metabolic diseases.
Collapse
Affiliation(s)
- Rodrigo Antonio Peliciari-Garcia
- Department of Biological Sciences, Morphophysiology and Pathology Sector, Federal University of São Paulo (UNIFESP), Diadema, SP, Brazil.
| | - Carolina Fonseca de Barros
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ayla Secio-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Diogo de Barros Peruchetti
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Renata Marino Romano
- Department of Medicine, State University of Central-West (UNICENTRO), Guarapuava, Parana, Brazil
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
3
|
Ghafouri E, Bigdeli M, Khalafiyan A, Amirkhani Z, Ghanbari R, Hasan A, Khanahmad H, Boshtam M, Makvandi P. Unmasking the complex roles of hypocalcemia in cancer, COVID-19, and sepsis: Engineered nanodelivery and diagnosis. ENVIRONMENTAL RESEARCH 2023; 238:116979. [PMID: 37660871 DOI: 10.1016/j.envres.2023.116979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Calcium (Ca2+) homeostasis is essential for maintaining physiological processes in the body. Disruptions in Ca2+ signaling can lead to various pathological conditions including inflammation, fibrosis, impaired immune function, and accelerated senescence. Hypocalcemia, a common symptom in diseases such as acute respiratory distress syndrome (ARDS), cancer, septic shock, and COVID-19, can have both potential protective and detrimental effects. This article explores the multifaceted role of Ca2+ dysregulation in inflammation, fibrosis, impaired immune function, and accelerated senescence, contributing to disease severity. Targeting Ca2+ signaling pathways may provide opportunities to develop novel therapeutics for age-related diseases and combat viral infections. However, the role of Ca2+ in viral infections is complex, and evidence suggests that hypocalcemia may have a protective effect against certain viruses, while changes in Ca2+ homeostasis can influence susceptibility to viral infections. The effectiveness and safety of Ca2+ supplements in COVID-19 patients remain a subject of ongoing research and debate. Further investigations are needed to understand the intricate interplay between Ca2+ signaling and disease pathogenesis.
Collapse
Affiliation(s)
- Elham Ghafouri
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Anis Khalafiyan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zohre Amirkhani
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roham Ghanbari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China; School of Engineering, Institute for Bioengineering, The University of Edinburgh, Edinburgh, EH9 3JL, UK.
| |
Collapse
|
4
|
Babačić H, Christ W, Araújo JE, Mermelekas G, Sharma N, Tynell J, García M, Varnaite R, Asgeirsson H, Glans H, Lehtiö J, Gredmark-Russ S, Klingström J, Pernemalm M. Comprehensive proteomics and meta-analysis of COVID-19 host response. Nat Commun 2023; 14:5921. [PMID: 37739942 PMCID: PMC10516886 DOI: 10.1038/s41467-023-41159-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/24/2023] [Indexed: 09/24/2023] Open
Abstract
COVID-19 is characterised by systemic immunological perturbations in the human body, which can lead to multi-organ damage. Many of these processes are considered to be mediated by the blood. Therefore, to better understand the systemic host response to SARS-CoV-2 infection, we performed systematic analyses of the circulating, soluble proteins in the blood through global proteomics by mass-spectrometry (MS) proteomics. Here, we show that a large part of the soluble blood proteome is altered in COVID-19, among them elevated levels of interferon-induced and proteasomal proteins. Some proteins that have alternating levels in human cells after a SARS-CoV-2 infection in vitro and in different organs of COVID-19 patients are deregulated in the blood, suggesting shared infection-related changes.The availability of different public proteomic resources on soluble blood proteome alterations leaves uncertainty about the change of a given protein during COVID-19. Hence, we performed a systematic review and meta-analysis of MS global proteomics studies of soluble blood proteomes, including up to 1706 individuals (1039 COVID-19 patients), to provide concluding estimates for the alteration of 1517 soluble blood proteins in COVID-19. Finally, based on the meta-analysis we developed CoViMAPP, an open-access resource for effect sizes of alterations and diagnostic potential of soluble blood proteins in COVID-19, which is publicly available for the research, clinical, and academic community.
Collapse
Affiliation(s)
- Haris Babačić
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Wanda Christ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - José Eduardo Araújo
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Mermelekas
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Nidhi Sharma
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Janne Tynell
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marina García
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Renata Varnaite
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hilmir Asgeirsson
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Hedvig Glans
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Janne Lehtiö
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sara Gredmark-Russ
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Jonas Klingström
- Centre for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Molecular Medicine and Virology (MMV), Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden
| | - Maria Pernemalm
- Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
König S, Vollenberg R, Tepasse PR. The Renin-Angiotensin System in COVID-19: Can Long COVID Be Predicted? Life (Basel) 2023; 13:1462. [PMID: 37511837 PMCID: PMC10381802 DOI: 10.3390/life13071462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Co-morbidities such as hypertension and cardiovascular disease are major risk factors for severe COVID-19. The renin-angiotensin system (RAS) is critically involved in their pathophysiology and is counter-balanced by both angiotensin-converting enzyme 2 (ACE2), the functional receptor of SARS-CoV-2, and the kallikrein-kinin system (KKS). Considerable research interest with respect to COVID-19 treatment is currently being directed towards the components of these systems. In earlier studies, we noticed significantly reduced carboxypeptidase N (CPN, KKS member) activity and excessive angiotensin-converting enzyme (ACE, RAS member) activity in the sera of both hospitalized COVID-19 patients and a subgroup of convalescent patients. The data had been obtained using labeled bradykinin (BK) as a reporter peptide, which is a target of both CPN and ACE. The data were supplemented with mass-spectrometry-based serum proteomic analysis. Here, we hypothesize that the degree of BK serum degradation could be indicative of Long COVID. (2) Review and Discussion: The recent literature is briefly reviewed. The fact that the levels of the BK serum degradation products did not reach normal concentrations in almost half of the patients during convalescences could have been partially due to a dysregulated RAS. (3) Conclusions: Standard tests for routine patient care in Long COVID come often back normal. We suggest that the measurement of selected members of the RAS such as ACE and angiotensin II or the use of our BK degradation assay could identify Long COVID candidates. Clinical studies are required to test this hypothesis.
Collapse
Affiliation(s)
- Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| | - Richard Vollenberg
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Münster, Germany
| | - Phil-Robin Tepasse
- Department of Medicine B for Gastroenterology, Hepatology, Endocrinology and Clinical Infectiology, University Hospital Muenster, 48149 Münster, Germany
| |
Collapse
|
6
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|