1
|
Kieliszek M, Sapazhenkava K. The Promising Role of Selenium and Yeast in the Fight Against Protein Amyloidosis. Biol Trace Elem Res 2024:10.1007/s12011-024-04245-x. [PMID: 38829477 DOI: 10.1007/s12011-024-04245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024]
Abstract
In recent years, increasing attention has been paid to research on diseases related to the deposition of misfolded proteins (amyloids) in various organs. Moreover, modern scientists emphasise the importance of selenium as a bioelement necessary for the proper functioning of living organisms. The inorganic form of selenium-sodium selenite (redox-active)-can prevent the formation of an insoluble polymer in proteins. It is very important to undertake tasks aimed at understanding the mechanisms of action of this element in inhibiting the formation of various types of amyloid. Furthermore, yeast cells play an important role in this matter as a eukaryotic model organism, which is intensively used in molecular research on protein amyloidosis. Due to the lack of appropriate treatment in the general population, the problem of amyloidosis remains unsolved. This extracellular accumulation of amyloid is one of the main factors responsible for the occurrence of Alzheimer's disease. The review presented here contains scientific information discussing a brief description of the possibility of amyloid formation in cells and the use of selenium as a factor preventing the formation of these protein aggregates. Recent studies have shown that the yeast model can be successfully used as a eukaryotic organism in biotechnological research aimed at understanding the essence of the entire amyloidosis process. Understanding the mechanisms that regulate the reaction of yeast to selenium and the phenomenon of amyloidosis is important in the aetiology and pathogenesis of various disease states. Therefore, it is imperative to conduct further research and analysis aimed at explaining and confirming the role of selenium in the processes of protein misfolding disorders. The rest of the article discusses the characteristics of food protein amyloidosis and their use in the food industry. During such tests, their toxicity is checked because not all food proteins can produce amyloid that is toxic to cells. It should also be noted that a moderate diet is beneficial for the corresponding disease relief caused by amyloidosis.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland.
| | - Katsiaryna Sapazhenkava
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, Warsaw, 02-776, Poland
| |
Collapse
|
2
|
Jena S, Tulsiyan KD, Sahoo RR, Rout S, Sahu AK, Biswal HS. Critical assessment of selenourea as an efficient small molecule fluorescence quenching probe to monitor protein dynamics. Chem Sci 2023; 14:14200-14210. [PMID: 38098725 PMCID: PMC10718066 DOI: 10.1039/d3sc04287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
Organoselenium compounds have recently been the experimentalists' delight due to their broad applications in organic synthesis, medicinal chemistry, and materials science. Selenium atom replacement of the carbonyl oxygen of the urea moiety dramatically reduces the HOMO-LUMO gap and oxidation potential, which completely changes the physicochemical properties of selenocarbonyl compounds. To our surprise, the photophysics and utility of a simple molecule such as selenourea (SeU) have not been explored in detail, which persuaded us to investigate its role in excited state processes. The steady-state emission, temperature-dependent time-correlated single photon counting, and femtosecond fluorescence upconversion experimental results confirmed that SeU significantly enhances the fluorescence quenching through a photoinduced electron transfer (PET) mechanism with an ∼10 ps ultrafast intrinsic PET lifetime component which is mostly absent in thiourea (TU). A wide range of fluorophores, based on their different redox abilities and fluorescence lifetimes covering a broad spectral window (λex: 390-590 nm and λem: 490-690 nm), were chosen to validate the proof of the concept. It was extended to tetramethylrhodamine (TMR)-5-maleimide labeled lysozyme protein, where we observed significant fluorescence quenching in the presence of SeU. The present work emphasizes that the high quenching efficiency with an ultrafast PET process, reduced orbital energy gap, and higher negative free energy change of the electron transfer reaction are the representative characteristics of selenourea or selenoamides to enable them as potential surrogates of thioamides or oxoamides quenching probes to monitor protein conformational changes and dynamics.
Collapse
Affiliation(s)
- Subhrakant Jena
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Kiran Devi Tulsiyan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Rudhi Ranjan Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Saiprakash Rout
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Akshay Kumar Sahu
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO-Bhimpur-Padanpur, Via-Jatni, District-Khurda, PIN-752050 Bhubaneswar India
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
3
|
Kanak KR, Dass RS, Pan A. Anti-quorum sensing potential of selenium nanoparticles against LasI/R, RhlI/R, and PQS/MvfR in Pseudomonas aeruginosa: a molecular docking approach. Front Mol Biosci 2023; 10:1203672. [PMID: 37635941 PMCID: PMC10449602 DOI: 10.3389/fmolb.2023.1203672] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Pseudomonas aeruginosa is an infectious pathogen which has the ability to cause primary and secondary contagions in the blood, lungs, and other body parts of immunosuppressed individuals, as well as community-acquired diseases, such as folliculitis, osteomyelitis, pneumonia, and others. This opportunistic bacterium displays drug resistance and regulates its pathogenicity via the quorum sensing (QS) mechanism, which includes the LasI/R, RhlI/R, and PQS/MvfR systems. Targeting the QS systems might be an excellent way to treat P. aeruginosa infections. Although a wide array of antibiotics, namely, newer penicillins, cephalosporins, and combination drugs are being used, the use of selenium nanoparticles (SeNPs) to cure P. aeruginosa infections is extremely rare as their mechanistic interactions are weakly understood, which results in carrying out this study. The present study demonstrates a computational approach of binding the interaction pattern between SeNPs and the QS signaling proteins in P. aeruginosa, utilizing multiple bioinformatics approaches. The computational investigation revealed that SeNPs were acutely 'locked' into the active region of the relevant proteins by the abundant residues in their surroundings. The PatchDock-based molecular docking analysis evidently indicated the strong and significant interaction between SeNPs and the catalytic cleft of LasI synthase (Phe105-Se = 2.7 Å and Thr121-Se = 3.8 Å), RhlI synthase (Leu102-Se = 3.7 Å and Val138-Se = 3.2 Å), transcriptional receptor protein LasR (Lys42-Se = 3.9 Å, Arg122-Se = 3.2 Å, and Glu124-Se = 3.9 Å), RhlR (Tyr43-Se = 2.9 Å, Tyr45-Se = 3.4 Å, and His61-Se = 3.5 Å), and MvfR (Leu208-Se = 3.2 Å and Arg209-Se = 4.0 Å). The production of acyl homoserine lactones (AHLs) was inhibited by the use of SeNPs, thereby preventing QS as well. Obstructing the binding affinity of transcriptional regulatory proteins may cause the suppression of LasR, RhlR, and MvfR systems to become inactive, thereby blocking the activation of QS-regulated virulence factors along with their associated gene expression. Our findings clearly showed that SeNPs have anti-QS properties against the established QS systems of P. aeruginosa, which strongly advocated that SeNPs might be a potent solution to tackle drug resistance and a viable alternative to conventional antibiotics along with being helpful in therapeutic development to cure P. aeruginosa infections.
Collapse
Affiliation(s)
- Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| | - Archana Pan
- Department of Bioinformatics, School of Life Sciences, Pondicherry University (A Central University), Pondicherry, India
| |
Collapse
|
4
|
Dutta J, Routray C, Pandey S, Biswal HS. Intermolecular noncovalent interactions with carbon in solution. Chem Sci 2022; 13:14327-14335. [PMID: 36545132 PMCID: PMC9749111 DOI: 10.1039/d2sc05431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/20/2022] [Indexed: 11/22/2022] Open
Abstract
One of the most familiar carbon-centered noncovalent interactions (NCIs) involving an antibonding π*-orbital situated at the Bürgi-Dunitz angle from the electron donor, mostly lone pairs of electrons, is known as n → π* interactions, and if it involves a σ* orbital in a linear fashion, then it is known as the carbon bond. These NCIs can be intra- or inter-molecular and are usually weak in strength but have a paramount effect on the structure and function of small-molecular crystals and proteins. Surprisingly, the experimental evidence of such interactions in the solution phase is scarce. It is even difficult to determine the interaction energy in the solution. Using NMR spectroscopy aided with molecular dynamics (MD) simulation and high-level quantum mechanical calculations, herein we provide the experimental evidence of intermolecular carbon-centered NCIs in solution. The challenge was to find appropriate heterodimers that could sustain room temperature thermal energy and collisions from the solvent molecules. However, after several trial model compounds, the pyridine-N-oxide:dimethyltetracyanocyclopropane (PNO-DMTCCP) complex was found to be a good candidate for the investigation. NBO analyses show that the PNO:DMTCCP complex is stabilized mainly by intermolecular n → π* interaction when a weaker carbon bond gives extra stability to the complex. From the NMR study, it is observed that the NCIs between DMTCCP and PNO are enthalpy driven with an enthalpy change of -28.12 kJ mol-1 and dimerization energy of ∼-38 kJ mol-1 is comparable to the binding energies of a conventional hydrogen-bonded dimer. This study opens up a new strategy to investigate weak intermolecular interactions such as n → π* interaction and carbon bonds in the solution phase.
Collapse
Affiliation(s)
- Juhi Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Chinmay Routray
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Shalini Pandey
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) PO - Bhimpur-Padanpur, Via-Jatni, District - Khurda PIN - 752050 Bhubaneswar India +91-674-2494-185, +91-674-2494-186
- Homi Bhabha National Institute, Training School Complex Anushakti Nagar Mumbai 400094 India
| |
Collapse
|
5
|
Dijck-Brouwer DAJ, Muskiet FAJ, Verheesen RH, Schaafsma G, Schaafsma A, Geurts JMW. Thyroidal and Extrathyroidal Requirements for Iodine and Selenium: A Combined Evolutionary and (Patho)Physiological Approach. Nutrients 2022; 14:3886. [PMID: 36235539 PMCID: PMC9571367 DOI: 10.3390/nu14193886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Iodide is an antioxidant, oxidant and thyroid hormone constituent. Selenoproteins are needed for triiodothyronine synthesis, its deactivation and iodine release. They also protect thyroidal and extrathyroidal tissues from hydrogen peroxide used in the 'peroxidase partner system'. This system produces thyroid hormone and reactive iodine in exocrine glands to kill microbes. Exocrine glands recycle iodine and with high urinary clearance require constant dietary supply, unlike the thyroid. Disbalanced iodine-selenium explains relations between thyroid autoimmune disease (TAD) and cancer of thyroid and exocrine organs, notably stomach, breast, and prostate. Seafood is iodine unconstrained, but selenium constrained. Terrestrial food contains little iodine while selenium ranges from highly deficient to highly toxic. Iodine vs. TAD is U-shaped, but only low selenium relates to TAD. Oxidative stress from low selenium, and infection from disbalanced iodine-selenium, may generate cancer of thyroid and exocrine glands. Traditional Japanese diet resembles our ancient seashore-based diet and relates to aforementioned diseases. Adequate iodine might be in the milligram range but is toxic at low selenium. Optimal selenoprotein-P at 105 µg selenium/day agrees with Japanese intakes. Selenium upper limit may remain at 300-400 µg/day. Seafood combines iodine, selenium and other critical nutrients. It brings us back to the seashore diet that made us what we currently still are.
Collapse
Affiliation(s)
- D A Janneke Dijck-Brouwer
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Frits A J Muskiet
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Richard H Verheesen
- Regionaal Reuma Centrum Z.O. Brabant Máxima Medisch Centrum, Ds. Th. Fliednerstraat 1, 5631 BM Eindhoven, The Netherlands
| | - Gertjan Schaafsma
- Schaafsma Advisory Services in Food, Health and Safety, Rembrandtlaan 12, 3925 VD Scherpenzeel, The Netherlands
| | | | | |
Collapse
|