1
|
Chen S, Liu Z, Li B, Hou Y, Peng Y, Li J, Yuan Q, Gan W. Probing the structural evolution on the surface of cardiolipin vesicles with an amphiphilic second harmonic generation and fluorescence probe. J Chem Phys 2024; 161:014705. [PMID: 38949588 DOI: 10.1063/5.0211845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Investigating the influence of the ambient chemical environment on molecular behaviors in liposomes is crucial for understanding and manipulating cellular vitality as well as the capabilities of lipid drug carriers in various environments. Here, we designed and synthesized a second harmonic generation (SHG) and fluorescence probe molecule called Pyr-Py+-N+ (PPN), which possesses membrane-targeting capability. We employed PPN to investigate the response of lipid vesicles composed of cardiolipin to the presence of exogenous salt. The kinetic behaviors, including the adsorption and embedding of PPN on the surface of small unilamellar vesicles (SUVs) composed of cardiolipin, were analyzed. The response of the SUVs to the addition of NaCl was also monitored. A rapid decrease in vesicle size can be evidenced through the rapid drop in SHG emission originating from PPN located on the vesicle surface.
Collapse
Affiliation(s)
- Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Zhongcheng Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yi Hou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Yingying Peng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China and School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
2
|
Li J, Chen S, Xu B, He Z, Yuan Q, Gan W. Temperature-Modulated Evolution of Surface Structures Induces Significant Enhancement of Two-Photon Fluorescent Emission from a Dye Molecule. J Phys Chem B 2024; 128:6400-6409. [PMID: 38914939 DOI: 10.1021/acs.jpcb.4c02471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Fluorescence is an essential property of molecules and materials that plays a pivotal role across various areas such as lighting, sensing, imaging, and other applications. For instance, temperature-sensitive fluorescence emission is widely utilized for chemo-/biosensing but usually decreases the intensity upon the increase in temperature. In this study, we observed a temperature-induced enhancement of up to ∼150 times in two-photon fluorescence (TPF) emission from a dye molecule, 4-(4-diethylaminostyry)-1-methylpyridinium iodide (D289), as it interacted with binary complex vesicles composed of two commonly applied surfactants: sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). By employing second harmonic generation (SHG) and TPF techniques, we clearly revealed the temperature-dependent kinetic behavior of D289 on the surface of the vesicles and utilized it to interpret the origin of the significant TPF enhancement. Additionally, we also demonstrated a similar heating-induced enhancement of the TPF emission from D289 on the membrane of phospholipid vesicles, indicating the potential application of TPF in temperature sensing in the biology systems. The embedding of D289 in the tightly packed alkane chains was identified as the key factor in enhancing the TPF emission from D289. This finding may provide valuable information for synthesizing fluorescence materials with a high optical yield.
Collapse
Affiliation(s)
- Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Zikai He
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|
3
|
Chou Chau YF. Boosting Second Harmonic Generation Efficiency and Nonlinear Susceptibility via Metasurfaces Featuring Split-Ring Resonators and Bowtie Nanoantennas. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:664. [PMID: 38668158 PMCID: PMC11053649 DOI: 10.3390/nano14080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024]
Abstract
This work investigates a metasurface design to achieve remarkable second harmonic generation (SHG) conversion efficiency and enhance effective nonlinear susceptibility using the finite element method. The elements of the designed structure are composed of a rectangular split-ring resonator Ag film, a bowtie-shaped Ag nanoantenna, and a pair of Bi bars that induce nonlinear optical phenomena due to the nonuniform distribution of the electric and magnetic fields within the device surface. The simulation results agree perfectly with the theory and demonstrate outstanding achievements in terms of SHG conversion efficiency (η) and effective nonlinear susceptibility (χeff(2)). Specifically, the metasurface reaches a peak η value of 4.544×10-8 and an effective nonlinear susceptibility of 3.4×104 pm/V. This work presents a novel and versatile design to achieve high η and χeff(2) in an SHG metasurface.
Collapse
Affiliation(s)
- Yuan-Fong Chou Chau
- Centre for Advanced Material and Energy Sciences, Universiti Brunei Darussalam, Tungku Link, Gadong, Bandar Seri Begawan BE1410, Brunei
| |
Collapse
|
4
|
Li B, Li J, Chen S, Yuan Q, Fang C, Gan W. Monitoring the response of a model protocell to dye and surfactant molecules through second harmonic generation and fluorescence imaging. Phys Chem Chem Phys 2024; 26:8148-8157. [PMID: 38380536 DOI: 10.1039/d4cp00009a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Probing the interaction between molecules and protocells is crucial for understanding the passive transport of functional molecules in and out of artificial and real cells. Second-harmonic generation (SHG) has been proven to be a powerful method for analyzing the adsorption and cross-membrane transport of molecules on lipid bilayers. In this study, we used SHG and two-photon fluorescence (TPF) imaging to study the interaction of charged dye molecules (D289) with a lipid vesicle. Unexpectedly, it was observed that the transport of D289 at a relatively high concentration is not as efficient as that at a lower dye concentration. Periodic shrinking of the model protocell and discharging of D289 out from the vesicle were revealed by combined analyses of SHG and TPF images. The response of the vesicle to a surfactant was also analyzed with D289 as a probe. This work demonstrates that the combined SHG and TPF imaging method is a unique approach that can provide detailed information on the interaction of molecules and lipids (both morphology and molecular kinetics). Determining these subtle interfacial kinetics in molecules is important for understanding the mechanism of many biophysical processes occurring on lipids.
Collapse
Affiliation(s)
- Bifei Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Jianhui Li
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Shujiao Chen
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
| | - Chao Fang
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China
| |
Collapse
|