1
|
Pan Y, Ming K, Guo D, Liu X, Deng C, Chi Q, Liu X, Wang C, Xu K. Non-targeted metabolomics and explainable artificial intelligence: Effects of processing and color on coniferyl aldehyde levels in Eucommiae cortex. Food Chem 2024; 460:140564. [PMID: 39089015 DOI: 10.1016/j.foodchem.2024.140564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Eucommia ulmoides, a plant native to China, is valued for its medicinal properties and has applications in food, health products, and traditional Chinese medicine. Processed Eucommiae Cortex (EC) has historically been a highly valued medicine. Ancient doctors had ample experience processing EC, especially with ginger juice, as documented in traditional Chinese medical texts. The combination of EC and ginger juice helps release and transform the active ingredients, strengthening the medicine's effectiveness and improving its taste and shelf life. However, the lack of quality control standards for Ginger-Eucommiae Cortex (G-EC), processed from EC and ginger, presents challenges for its industrial and clinical use. This study optimized G-EC processing using the CRITIC and Box-Behnken methods. Metabolomics showed 517 chemical changes between raw and processed G-EC, particularly an increase in coniferyl aldehyde (CFA). Explainable artificial intelligence techniques revealed the feasibility of using color to CFA content, providing insights into quality indicators.
Collapse
Affiliation(s)
- Yijing Pan
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Kehong Ming
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Dongmei Guo
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Xinyue Liu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Chenxi Deng
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Qingjia Chi
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Department of Mechanics and Engineering Structure, Wuhan University of Technology, China.
| | - Xianqiong Liu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| | - Chunli Wang
- Hubei Shizhen Laboratory, Wuhan 430065, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Kang Xu
- Hubei Provincial Engineering Technology Research Center for Chinese Medicine Processing, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430065, China; Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
2
|
Huo J, Zhe W, Zhang Y, Yang Q, Zeng Z. High-coverage characterization and discovery of molecular markers for quality control of natural fragrant plant extracts using UPLC-HRMS-based untargeted metabolomics. Anal Bioanal Chem 2024; 416:5639-5654. [PMID: 39167185 DOI: 10.1007/s00216-024-05478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The chemical components of natural fragrant plant extracts are of high complexity, and the strategies for quality control (QC) and further discovery of fragrance mechanisms still need to be further investigated. This study integrated the strategies and methods of untargeted metabolomics and chemometrics and statistical modeling to attain the goal. The techniques of reversed-phase and HILIC analysis of ultra-performance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS) were simultaneously used to collect data in both positive and negative ion modes. The pattern analysis of fingerprints and discovery of characteristic molecular markers for QC analysis were comprehensively employed to reach in-depth analysis of the quality variation and discovery of differential molecules among natural fragrant plant extracts. The former uses fingerprint technique to analyze their overall similarities and differences, and the latter comprehensively discovers molecular substances characterizing the chemical characteristics of fragrant extracts with the help of metabolomics and univariate and multivariate methods. The findings are expected to be used as the molecular markers in product manufacturing, sales, and consumption to achieve accurate quality control and recognition of targeted molecules for potential quality monitoring using spectroscopy techniques. In this work, 27 natural fragrant extracts were applied as examples, and their chemical components were comprehensively analyzed with discovery of markers for quality control. After data integration, 1178 molecules were annotated, and 267 differential metabolite molecules with the values of variable importance in the projection (VIP) larger than 1.0 were found. The results show that the method proposed in this work is of great significance for high-coverage analysis, QC marker discovery, and aroma mechanism elucidation, which has potential applications in the areas of food, cosmetics, pharmaceuticals, tobacco, and others.
Collapse
Affiliation(s)
- Jinfeng Huo
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Wei Zhe
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China
| | - Yipeng Zhang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China.
| | - Qianxu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd, Kunming, 650231, China.
| | - Zhongda Zeng
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China.
| |
Collapse
|
3
|
Huang P, Li Z, Wang H, Huang J, Tan G, Fu Y, Liu X, Zheng S, Xu P, Sun M, Zeng J. A genome assembly of decaploid Houttuynia cordata provides insights into the evolution of Houttuynia and the biosynthesis of alkaloids. HORTICULTURE RESEARCH 2024; 11:uhae203. [PMID: 39308792 PMCID: PMC11415239 DOI: 10.1093/hr/uhae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/14/2024] [Indexed: 09/25/2024]
Abstract
Houttuynia cordata Thunb., commonly known as yuxingcao in China, is known for its characteristic fishy smell and is widely recognized as an important herb and vegetable in many parts of Asia. However, the lack of genomic information on H. cordata limits the understanding of its population structure, genetic diversity, and biosynthesis of medicinal compounds. Here we used single-molecule sequencing, Illumina paired-end sequencing, and chromosome conformation capture technology to construct the first chromosome-scale decaploid H. cordata reference genome. The genome assembly was 2.63 Gb in size, with 1348 contigs and a contig N50 of 21.94 Mb further clustered and ordered into 88 pseudochromosomes based on Hi-C analysis. The results of genome evolution analysis showed that H. cordata underwent a whole-genome duplication (WGD) event ~17 million years ago, and an additional WGD event occurred 3.3 million years ago, which may be the main factor leading to the high abundance of multiple copies of orthologous genes. Here, transcriptome sequencing across five different tissues revealed significant expansion and distinct expression patterns of key gene families, such as l-amino acid/l-tryptophan decarboxylase and strictosidine synthase, which are essential for the biosynthesis of isoquinoline and indole alkaloids, along with the identification of genes such as TTM3, which is critical for root development. This study constructed the first decaploid medicinal plant genome and revealed the genome evolution and polyploidization events of H. cordata .
Collapse
Affiliation(s)
- Peng Huang
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- Traditional Chinese Medicine Breeding Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Zhu Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Huan Wang
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan 430075, Hubei, China
| | - Jinqiang Huang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Guifeng Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yue Fu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Xiubin Liu
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- Traditional Chinese Medicine Breeding Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| | - Shang Zheng
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan 430075, Hubei, China
| | - Peng Xu
- Wuhan Frasergen Bioinformatics Co., Ltd, Wuhan 430075, Hubei, China
| | - Mengshan Sun
- Hunan Institute of Agricultural Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Jianguo Zeng
- Hunan Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, Hunan, China
- Traditional Chinese Medicine Breeding Center of Yuelushan Laboratory, Changsha 410128, Hunan, China
| |
Collapse
|
4
|
Wang X, Guo J, Zang S, Liu B, Wu Y. Comparison of Flavonoid Content, Antioxidant Potential, Acetylcholinesterase Inhibition Activity and Volatile Components Based on HS-SPME-GC-MS of Different Parts from Matteuccia struthiopteris (L.) Todaro. Molecules 2024; 29:1142. [PMID: 38474653 DOI: 10.3390/molecules29051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Matteuccia struthiopteris is one of the most globally consumed edible ferns and widely used in folk medicine. Reports mainly focus on young fronds and the rhizome which are common edible medicinal parts. However, there are few detailed reports on other parts. Therefore, the volatile components of different parts based on HS-SPME-GC-MS were identified, and total flavonoid contents, antioxidant activities and acetylcholinesterase inhibitory activities were compared in order to reveal the difference of volatile components and potential medicinal value of different parts. The results showed that total flavonoid contents, antioxidant activities and volatile components of different parts were obviously different. The crozier exhibited the strongest antioxidant activities, but only underground parts exhibited a dose-dependent inhibition potential against AChE. Common volatile compounds were furfural and 2-furancarboxaldehyde, 5-methyl-. In addition, it was found that some volatile components from adventitious root, trophophyll, sporophyll and petiole were important ingredients in food, cosmetics, industrial manufacturing and pharmaceutical applications.
Collapse
Affiliation(s)
- Xin Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Jiatao Guo
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Siqi Zang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Baodong Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Yuhuan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
5
|
Wei P, Luo Q, Hou Y, Zhao F, Li F, Meng Q. Houttuynia Cordata Thunb.: A comprehensive review of traditional applications, phytochemistry, pharmacology and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155195. [PMID: 37956635 DOI: 10.1016/j.phymed.2023.155195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/15/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1β, and activating the AMPK pathway. CONCLUSION This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.
Collapse
Affiliation(s)
- Panpan Wei
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Qin Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Yun Hou
- Department of Histology and Embryology, Basic Medical College, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China
| | - Feng Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Qingguo Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| |
Collapse
|
6
|
Nguyen MH, Ha DL, Do BM, Chau NTN, Tran TH, Le NTH, Le MT. RP-HPLC-Based Flavonoid Profiling Accompanied with Multivariate Analysis: An Efficient Approach for Quality Assessment of Houttuynia cordata Thunb Leaves and Their Commercial Products. Molecules 2023; 28:6378. [PMID: 37687204 PMCID: PMC10489801 DOI: 10.3390/molecules28176378] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Chemical profiling for quality monitoring and evaluation of medicinal plants is gaining attention. This study aims to develop an HPLC method followed by multivariate analysis to obtain HPLC profiles of five specific flavonoids, including rutin (1), hyperin (2), isoquercitrin (3), quercitrin (4), and quercetin (5) from Houttuynia cordata leaves and powder products and assess the quality of H. cordata samples. Eventually, we successfully established HPLC-based flavonoid profiles and quantified the contents of 32 H. cordata fresh leave samples and four powder products. The study also quantified the contents of those five essential flavonoids using an optimized RP-HPLC method. Peak areas of samples were then investigated with principal component analysis (PCA) and hierarchical cluster analysis (HCA) to evaluate the similarity and variance. Principal components in PCA strongly influenced by hyperin and quercetin showed that the samples were clustered into subgroups, demonstrating H. cordata samples' quality. The results of HCA showed the similarity and divided the samples into seven subgroups. In conclusion, we have successfully developed a practical methodology that combined the HPLC-based flavonoid profiling and multivariate analysis for the quantification and quality control of H. cordata samples from fresh leaves and powder products. For further studies, we will consider various environmental factors, including climate and soil factors, to investigate their effects on the flavonoid contents of H. cordata.
Collapse
Affiliation(s)
- Minh Hien Nguyen
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Dieu Ly Ha
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Binh Minh Do
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Ngoc Trong Nghia Chau
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thi Huong Tran
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Thien Han Le
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Minh Tri Le
- School of Medicine, Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam; (D.L.H.); (B.M.D.); (N.T.N.C.); (T.H.T.); (N.T.H.L.)
- Vietnam National University Ho Chi Minh City, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 700000, Vietnam
- Faculty of Pharmacy, University of Medicine and Pharmacy of Ho Chi Minh City, Dinh Tien Hoang Street, Ben Nghe Ward, 1 District, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
7
|
Thawtar MS, Kusano M, Yingtao L, Thein MS, Tanaka K, Rivera M, Shi M, Watanabe KN. Exploring Volatile Organic Compounds in Rhizomes and Leaves of Kaempferia parviflora Wall. Ex Baker Using HS-SPME and GC-TOF/MS Combined with Multivariate Analysis. Metabolites 2023; 13:metabo13050651. [PMID: 37233692 DOI: 10.3390/metabo13050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/27/2023] Open
Abstract
Volatile organic compounds (VOCs) play an important role in the biological activities of the medicinal Zingiberaceae species. In commercial preparations of VOCs from Kaempferia parviflora rhizomes, its leaves are wasted as by-products. The foliage could be an alternative source to rhizome, but its VOCs composition has not been explored previously. In this study, the VOCs in the leaves and rhizomes of K. parviflora plants grown in a growth room and in the field were analyzed using the headspace solid-phase microextraction (HS-SPME) method coupled with gas chromatography and time-of-flight mass spectrometry (GC-TOF-MS). The results showed a total of 75 and 78 VOCs identified from the leaves and rhizomes, respectively, of plants grown in the growth room. In the field samples, 96 VOCs were detected from the leaves and 98 from the rhizomes. These numbers are higher compared to the previous reports, which can be attributed to the analytical techniques used. It was also observed that monoterpenes were dominant in leaves, whereas sesquiterpenes were more abundant in rhizomes. Principal component analysis (PCA) revealed significantly higher abundance and diversity of VOCs in plants grown in the field than in the growth room. A high level of similarity of identified VOCs between the two tissues was also observed, as they shared 68 and 94 VOCs in the growth room and field samples, respectively. The difference lies in the relative abundance of VOCs, as most of them are abundant in rhizomes. Overall, the current study showed that the leaves of K. parviflora, grown in any growth conditions, can be further utilized as an alternative source of VOCs for rhizomes.
Collapse
Affiliation(s)
- May San Thawtar
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Miyako Kusano
- Tsukuba-Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Li Yingtao
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Min San Thein
- Department of Agricultural Research, Ministry of Agriculture, Livestock, and Irrigation, Yezin, Myanmar
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya 156-8502, Japan
- Faculty of Informatics, Tokyo University of Information Sciences, Chiba 65-8501, Japan
| | - Marlon Rivera
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
- Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Miao Shi
- Degree Programs in Life and Earth Sciences, Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kazuo N Watanabe
- Tsukuba-Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
8
|
Mi H, Zhang P, Yao L, Gao H, Wei F, Lu T, Ma S. Identification of Daphne genkwa and Its Vinegar-Processed Products by Ultraperformance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and Chemometrics. Molecules 2023; 28:molecules28103990. [PMID: 37241730 DOI: 10.3390/molecules28103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Crude herbs of Daphne genkwa (CHDG) are often used in traditional Chinese medicine to treat scabies baldness, carbuncles, and chilblain owing to their significant purgation and curative effects. The most common technique for processing DG involves the use of vinegar to reduce the toxicity of CHDG and enhance its clinical efficacy. Vinegar-processed DG (VPDG) is used as an internal medicine to treat chest and abdominal water accumulation, phlegm accumulation, asthma, and constipation, among other diseases. In this study, the changes in the chemical composition of CHDG after vinegar processing and the inner components of the changed curative effects were elucidated using optimized ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Untargeted metabolomics, based on multivariate statistical analyses, was also used to profile differences between CHDG and VPDG. Eight marker compounds were identified using orthogonal partial least-squares discrimination analysis, which indicated significant differences between CHDG and VPDG. The concentrations of apigenin-7-O-β-d-methylglucuronate and hydroxygenkwanin were considerably higher in VPDG than those in CHDG, whereas the amounts of caffeic acid, quercetin, tiliroside, naringenin, genkwanines O, and orthobenzoate 2 were significantly lower. The obtained results can indicate the transformation mechanisms of certain changed compounds. To the best of our knowledge, this study is the first to employ mass spectrometry to detect the marker components of CHDG and VPDG.
Collapse
Affiliation(s)
- Hongying Mi
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Ping Zhang
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Lingwen Yao
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Huiyuan Gao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Feng Wei
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| | - Tulin Lu
- School of Chinese Material Medica, Nanjing University of Chinese Medicine, No. 138 Xianlin Road, Nanjing 210023, China
| | - Shuangcheng Ma
- Research and Inspection Center of Traditional Chinese Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, National Medical Products Administration, No. 31 Huatuo Road, Beijing 102629, China
| |
Collapse
|
9
|
Zhang S, Zhang H, Chen S, Yang L, Chen X, Jiang H. Widely targeted metabolomic deciphers the vertical spatial distribution of flavor substances in Houttuynia cordata Thunb. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.105102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Qu W, Song X, Li G, Hou J, Han Y, Ye P, Zhang HE, Chen C, Chen Y, Wang E. Profiling and discovery of volatile marker compounds for Ginseng berries with different growth years by HS-SPME-GC-MS. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Wang Y, Liu B, Wang X, Fan Y. Comparison of Constituents and Antioxidant Activity of Above-Ground and Underground Parts of Dryopteris crassirhizoma Nakai Based on HS-SPME-GC-MS and UPLC/Q-TOF-MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154991. [PMID: 35956948 PMCID: PMC9370178 DOI: 10.3390/molecules27154991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022]
Abstract
Dryopteris crassirhizoma Nakai is a Chinese traditional medicinal fern plant for heat-clearing and detoxifying, promoting blood circulation and dissipating blood stasis. Previous researches showed that many factors could influence the components of medicinal plants, and the plant part is one of the main factors. So far, only the underground part of D. crassirhizoma, called “Mianma Guanzhong”, has been widely sold in the market. However, the above-ground part was usually at low utilization, resulting in a waste of medicinal resources. In order to further develop and utilize the medicinal resources of D. crassirhizoma, the constituents, total flavonoid contents and antioxidant activity of the above-ground and underground parts of D. crassirhizoma were tentatively analyzed and compared based on HS-SPME-GC-MS and UPLC/Q-TOF-MS. The results showed that (1) the volatile components were mainly focused in the above-ground part of D. crassirhizoma, including 3-carene, isoledene, ionene, 4-amino-1-naphthol and furfural. (2) Nonvolatile components of the underground part of D. crassirhizoma contained phenolic acid, flavonoids, phloroglucinol and less fatty acid. (3) The common compounds of the above-ground and underground parts of D. crassirhizoma were phenolic acid and flavaspidic acid AB. (4) Antioxidant activity of the underground part was stronger than that of the above-ground part of D. crassirhizoma. In conclusion, both the above-ground and underground parts of D. crassirhizoma are important medicinal resources worthy of further development.
Collapse
Affiliation(s)
- Yanjia Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Baodong Liu
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Xin Wang
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Correspondence: or (X.W.); (Y.F.)
| | - Yawen Fan
- College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
- Correspondence: or (X.W.); (Y.F.)
| |
Collapse
|