1
|
Mustafa YF, Hassan DA, Faisal AF, Alshaher MM. Synthesis of novel skipped diene-3-halocoumarin conjugates as potent anticancer and antibacterial biocompatible agents. RESULTS IN CHEMISTRY 2024; 11:101846. [DOI: 10.1016/j.rechem.2024.101846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Sang F, Liu C, Yan J, Su J, Niu S, Wang S, Zhao Y, Dang Q. Polysaccharide- and protein-based hydrogel dressings that enhance wound healing: A review. Int J Biol Macromol 2024; 280:135482. [PMID: 39278437 DOI: 10.1016/j.ijbiomac.2024.135482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Hydrogels can possess desired biochemical and mechanical properties, excellent biocompatibility, satisfactory biodegradability, and biological capabilities that promote skin repair, making them ideal candidates for skin healing dressings. Polysaccharides, such as chitosan, hyaluronic acid and sodium alginate as well as proteins, including gelatin, collagen and fibroin proteins, are biological macromolecules celebrated for their biocompatibility and biodegradability, are at the forefront of innovative hydrogel dressing development. This work first summarizes the skin wound healing process and its influencing factors, and then systematically articulates the multifunctional roles of hydrogels based on biological macromolecules (polysaccharides and proteins) as dressing in addressing bacterial infection, hemorrhage and inflammation during wound healing. Furthermore, this review explores the potential of these hydrogels as vehicles for combination therapy, by incorporating growth factors or stem cells. Finally, the article offers insights into future directions of such hydrogels in wound repair field.
Collapse
Affiliation(s)
- Feng Sang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Jingquan Yan
- National Engineering Technology Research Center for Marine Drugs, Marine Biomedical Research Institute of Qingdao, Ocean University of China, Qingdao 266003, PR China
| | - Jieyu Su
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Siyu Niu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Shiyun Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yan Zhao
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| |
Collapse
|
3
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
4
|
Bao Y, Zhu L, Wang Y, Liu J, Liu Z, Li Z, Zhou A, Wu H. Gualou-Xiebai herb pair and its active ingredients act against atherosclerosis by suppressing VSMC-derived foam cell formation via regulating P2RY12-mediated lipophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155341. [PMID: 38518636 DOI: 10.1016/j.phymed.2024.155341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 03/24/2024]
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPβ abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.
Collapse
MESH Headings
- Animals
- Atherosclerosis/drug therapy
- Foam Cells/drug effects
- Foam Cells/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Male
- Mice
- Drugs, Chinese Herbal/pharmacology
- Receptors, Purinergic P2Y12/metabolism
- Diet, High-Fat
- Mice, Inbred C57BL
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
- Disease Models, Animal
- Autophagy/drug effects
- Rats, Sprague-Dawley
- Lipid Metabolism/drug effects
- Aorta/drug effects
- Lipoproteins, LDL/metabolism
Collapse
Affiliation(s)
- Youli Bao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Li Zhu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuting Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Jiahui Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zijian Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhenglong Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China
| | - An Zhou
- The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China; Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China.
| | - Hongfei Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; The Experimental Research Center, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
5
|
Huang HT, Huang CY, Lee CJ, Sun BJ, Jhang ZW, Wen CC, Wang YH, Li TS, Chern CY, Chen YH. The angiogenesis-modulating effects of coumarin-derivatives. Comp Biochem Physiol C Toxicol Pharmacol 2024; 278:109862. [PMID: 38382586 DOI: 10.1016/j.cbpc.2024.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 02/15/2024] [Indexed: 02/23/2024]
Abstract
Coumarin is a natural compound that is rich in plants. Coumarin and its derivates were reported to have many biological activities, such as anti-bacterial, anti-tumor, and anti-coagulation. In this study, we examined the angiogenic modulating activities of six previously synthesized coumarin derivatives (Compound #1-#6) in zebrafish embryos and further confirmed them in a chick model. According to the survival rate in a zebrafish model, Compound #1 (100 %), #2 (82.5-100 %), and #4 (100 %) showed much less toxicity than Compound #3 (19.2-100 %), #5 (0-100 %), and #6 (0-100 %). Using a green blood vessel fluorescent transgenic fish Tg(fli1:egfp) to record the angiogenesis-modulating effects of Compound #1, #2, and #4, we found that Compound #2 had the highest effects in interfering intersegmental vessel growth, subintestinal vein growth, and caudal vein plexus remodeling. Chick chorioallantoic membrane (CAM) assay also showed that Compound #2 exposure led to a reduction of blood vessel growth. Real-time PCR experiments revealed that Compound #2 significantly changed the expression of vascular growth-related genes flt1, cdh5, and nrp1a in zebrafish. Based on our data from zebrafish and chick models, a new coumarin-derivative (Compound #2) possesses anti-angiogenic activity with low toxicity, but further investigation in mammal models is asked to confirm our findings.
Collapse
Affiliation(s)
- Han-Ting Huang
- Department of Chemistry, Tamkang University, Tamsui, Taiwan
| | | | - Chih-Jou Lee
- Department of Chemistry, Tamkang University, Tamsui, Taiwan
| | - Bo-Jie Sun
- Department of Chemistry, Tamkang University, Tamsui, Taiwan
| | - Zong-Wei Jhang
- Department of Applied Chemistry, National Chia-Yi University, Chiayi City 600, Taiwan
| | - Chi-Chung Wen
- Department of Mathematics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan
| | - Yun-Hsin Wang
- Department of Chemistry, Tamkang University, Tamsui, Taiwan
| | - Tao-Sheng Li
- Stem Cell Biology Laboratory, Atomic Bomb Disease Institute, Nagasaki University, Japan
| | - Ching-Yuh Chern
- Department of Applied Chemistry, National Chia-Yi University, Chiayi City 600, Taiwan.
| | - Yau-Hung Chen
- Department of Chemistry, Tamkang University, Tamsui, Taiwan.
| |
Collapse
|
6
|
Shehwar D, Barki S, Aliotta A, Veuthey L, Bertaggia Calderara D, Alberio L, Alam MR. Inhibition of mitochondrial calcium transporters alters adp-induced platelet responses. Mol Biol Rep 2024; 51:177. [PMID: 38252254 DOI: 10.1007/s11033-023-09116-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/06/2023] [Indexed: 01/23/2024]
Abstract
INTRODUCTION ADP-stimulated elevation of cytosolic Ca2+ is an important effector mechanism for platelet activation. The rapidly elevating cytosolic Ca2+ is also transported to mitochondrial matrix via Mitochondrial Ca2+ Uniporter (MCU) and extruded via Na+/Ca2+/Li+ Exchanger (NCLX). However, the exact contribution of MCU and NCLX in ADP-mediated platelet responses remains incompletely understood. METHODS AND RESULTS The present study aimed to elucidate the role of mitochondrial Ca2+ transport in ADP-stimulated platelet responses by inhibition of MCU and NCLX with mitoxantrone (MTX) and CGP37157 (CGP), respectively. As these inhibitory strategies are reported to cause distinct effects on matrix Ca2+ concentration, we hypothesized to observe opposite impact of MTX and CGP on ADP-induced platelet responses. Platelet aggregation profiling was performed by microplate-based spectrophotometery while p-selectin externalization and integrin αIIbβ3 activation were analyzed by fluorescent immunolabeling using flow cytometery. Our results confirmed the expression of both MCU and NCLX mRNAs with relatively low abundance of NCLX in human platelets. In line with our hypothesis, MTX caused a dose-dependent inhibition of ADP-induced platelet aggregation without displaying any cytotoxicity. Likewise, ADP-induced p-selectin externalization and integrin αIIbβ3 activation was also significantly attenuated in MTX-treated platelets. Concordantly, inhibition of NCLX with CGP yielded an accelerated ADP-stimulated platelet aggregation which was associated with an elevation of p-selectin surface expression and αIIbβ3 activation. CONCLUSION Together, these findings uncover a vital and hitherto poorly characterized role of mitochondrial Ca2+ transporters in ADP-induced platelet activation.
Collapse
Affiliation(s)
- Durre Shehwar
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Saima Barki
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Alessandro Aliotta
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010, Lausanne, Switzerland
| | - Lucas Veuthey
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010, Lausanne, Switzerland
| | - Debora Bertaggia Calderara
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010, Lausanne, Switzerland
| | - Lorenzo Alberio
- Hemostasis and Platelet Research Laboratory, Division of Hematology and Central Hematology Laboratory, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), CH-1010, Lausanne, Switzerland
| | - Muhammad Rizwan Alam
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
7
|
Bečić E, Salihović M, Tüzün B, Omeragić E, Imamović B, Dedić M, Roca S, Špirtović-Halilović S. Comparative study of experimental and DFT calculations for 3-cinnamoyl 4-hydroxycoumarin derivatives. Technol Health Care 2024; 32:2673-2684. [PMID: 38306075 DOI: 10.3233/thc-231798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
BACKGROUND Computational research plays an important role in predicting the chemical and physical properties of biologically active compounds important in future structural modifications to improve or modify biological activity. OBJECTIVE This research focuses on quantum chemical and spectroscopic investigations properties of synthesized 4-hydroxycoumarin derivatives. METHODS Quantum chemical calculations were obtained using B3LYP, HF, and M06-2x level methods with the 6-31++G (d,p) basis set. Afterward, IR, 1H, 13C, UV-Visible experimentally parameters were compared with the results obtained using the B3LYP/6-31+G*(d) basis set of the molecules to be able to characterize the structures. RESULTS Based on the quantum chemical calculations compound with acetamido group on the phenyl ring is the most reactive, and compound with nitro substituent is the least reactive and the the strongest electrophile among tested compounds. With the exception of compounds with dimethylamino group, all other compounds have a pronounced tautomer between OH and C = O group. The calculated and experimental values are in agreement with each other. CONCLUSION The molecular structure in the ground state of six 3-cinnamoyl 4-hydroxycoumarin derivatives was optimized using density functional theory. The observed and computed values were compared and it can be concluded that the theoretical results were in good linear agreement with the experimental data.
Collapse
Affiliation(s)
- Ervina Bečić
- Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mirsada Salihović
- Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Burak Tüzün
- Cumhuriyet University, Faculty of Science, Department of Chemistry, Sivas, Turkey
| | - Elma Omeragić
- Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Belma Imamović
- Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Mirza Dedić
- Faculty of Pharmacy, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sunčica Roca
- NMR Centre, Ru\djer Bošković Institute, Zagreb, Croatia
| | | |
Collapse
|
8
|
Radwan EM, Abo-Elabass E, Abd El-Baky AE, Alshwyeh HA, Almaimani RA, Almaimani G, Ibrahim IAA, Albogami A, Jaremko M, Alshawwa SZ, Saied EM. Unveiling the antitumor potential of novel N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamides as dual inhibitors of VEGFR2 kinase and cytochrome P450 for targeted treatment of hepatocellular carcinoma. Front Chem 2023; 11:1231030. [PMID: 37601910 PMCID: PMC10436493 DOI: 10.3389/fchem.2023.1231030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Being the sixth most diagnosed cancer and the fourth leading cause of cancer-related deaths worldwide, liver cancer is considered as a serious disease with a high prevalence and poor prognosis. Current anticancer drugs for liver cancer have drawbacks, such as limited efficacy in later stages of the disease, toxicity to healthy cells, and the potential for drug resistance. There is ample evidence that coumarin-based compounds are potent anticancer agents, with numerous analogues currently being investigated in preclinical and clinical studies. The current study aimed to explore the antitumor potency of a new class of 8-methoxycoumarin-3-carboxamides against liver cancer. Toward this aim, we have designed, synthesized, and characterized a new set of N-(substituted-phenyl)-8-methoxycoumarin-3-carboxamide analogues. The assessment of antitumor activity revealed that the synthesized class of compounds possesses substantial cytotoxicity toward Hep-G2 cells when compared to staurosporine, without significant impact on normal cells. Out of the synthesized compounds, compound 7 demonstrated the most potent cytotoxic effect against Hep-G2 cells with an IC50 of 0.75 µM, which was more potent than the drug staurosporine (IC50 = 8.37 µM). The investigation into the mechanism behind the antiproliferative activity of compound 7 revealed that it interferes with DNA replication and induces DNA damage, leading to cell cycle arrest as demonstrated by a significant decrease in the percentage of cells in the G1 and G2/M phases, along with an increase in the percentage of cells in the S phase. Flow cytometric analysis further revealed that compound 7 has the ability to trigger programmed cell death by inducing necrosis and apoptosis in HepG-2 cells. Further explorations into the mechanism of action demonstrated that compound 7 displays a potent dual-inhibitory activity toward cytochrome P450 and vascular endothelial growth factor receptor-2 (VEGFR-2) proteins, as compared to sorafenib drug. Further, detailed computational studies revealed that compound 7 displays a considerable binding affinity toward the binding cavity of VEGFR2 and CYP450 proteins. Taken together, our findings indicate that the newly synthesized class of compounds, particularly compound 7, could serve as a promising scaffold for the development of highly effective anticancer agents against liver cancer.
Collapse
Affiliation(s)
- Eman M. Radwan
- The Division of Organic Chemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Eman Abo-Elabass
- The Division of Biochemistry, Chemistry Department, Faculty of Science, Port-Said University, Port-Said, Egypt
| | - Atef E. Abd El-Baky
- Biochemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said, Egypt
| | - Hussah Abdullah Alshwyeh
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Basic and Applied Scientific Research Centre, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Riyad A. Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Department of Surgery, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdulaziz Albogami
- Biology Department, Faculty of science, Al-Baha University, Al Aqiq, Saudi Arabia
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences (BESE) and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samar Z. Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|