1
|
Wang H, Yu W, Wang T, Fang D, Wang Z, Wang Y. Therapeutic potential and pharmacological insights of total glucosides of paeony in dermatologic diseases: a comprehensive review. Front Pharmacol 2025; 15:1423717. [PMID: 39822741 PMCID: PMC11735457 DOI: 10.3389/fphar.2024.1423717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/27/2024] [Indexed: 01/19/2025] Open
Abstract
Total glucosides of paeony (TGP) are a group of monoterpenes extracted from Paeonia lactiflora Pall., primarily including metabolites such as paeoniflorin and oxypaeoniflorin. Modern pharmacological studies have shown that TGP possesses a variety of biological effects, including immunomodulatory, anti-inflammatory, hepatoprotective, nephroprotective, antidepressant, and cell proliferation regulatory activities. In recent years, clinical research has demonstrated favorable therapeutic effects of TGP on disorders of the liver, cardiovascular, nervous, endocrine, and skeletal systems. Particularly in dermatological treatments, TGP has been found to significantly improve clinical symptoms and shorten the course of the disease. However, there are still certain limitations in the scientific rigor of existing studies and in its clinical application. To assess the potential of TGP in treating dermatologic diseases, this article provides a review of its botanical sources, preparation and extraction processes, quality control, and major chemical metabolites, as well as its pharmacological research and clinical applications in dermatology. Additionally, the mechanisms of action, research gaps, and future directions for TGP in the treatment of dermatologic diseases are discussed, offering valuable guidance for future clinical research on TGP in dermatology.
Collapse
Affiliation(s)
- Huige Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenchao Yu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tong Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dianwei Fang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zeyun Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yuanhong Wang
- Department of Dermatology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Abd-Elhamid TH, Althumairy D, Bani Ismail M, Abu Zahra H, Seleem HS, Hassanein EHM, Ali FEM, Mahmoud AR. Neuroprotective effect of diosmin against chlorpyrifos-induced brain intoxication was mediated by regulating PPAR-γ and NF-κB/AP-1 signals. Food Chem Toxicol 2024; 193:114967. [PMID: 39197517 DOI: 10.1016/j.fct.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate (OP) pesticide. Unfortunately, pesticides are known to cause neuronal intoxication. Diosmin (DS) is an antioxidant, anti-inflammatory, and neuroprotective flavonoid with high efficacy and safety. We plan to investigate the efficacy of DS in treating CPF-induced neurotoxicity, as well as the mechanisms underlying the protective effects. In our study, rats were randomized into 5 groups: control, DS (50 mg/kg), CPF (10 mg/kg), CPF + DS (25 mg/kg), and CPF + DS (50 mg/kg). The results indicated that DS ameliorated neuronal intoxication induced by CPF, evidenced by decreasing Tau, p-Tau, and β-amyloid. Histological examinations support these findings. DS significantly ameliorated CPF-induced neuronal oxidative injury by decreasing MDA content and elevating GSH, GST, and SOD levels mediated by PPAR-γ upregulation. DS suppressed CPF-induced brain inflammation by decreasing MPO enzymatic activity and TNF-α, IL-1β, and IL-6 levels mediated by downregulation of NF-κB/AP-1(c-FOS and c-JUN) signal. Of note, DS protective effects were dose dependent. In conclusion, our data suggested that DS was a promising therapeutic strategy for attenuating CPF-induced neuronal intoxication by restoring oxidant-antioxidant balance and inhibiting inflammatory response in brain tissues.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Duaa Althumairy
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohammad Bani Ismail
- Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Hamad Abu Zahra
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 77110, Jordan.
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt; Department of Anatomy and Histology, College of Medicine, Qassim University, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Sun Z, Liu K, Liang C, Wen L, Wu J, Liu X, Li X. Diosmetin as a promising natural therapeutic agent: In vivo, in vitro mechanisms, and clinical studies. Phytother Res 2024; 38:3660-3694. [PMID: 38748620 DOI: 10.1002/ptr.8214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/09/2024] [Accepted: 04/13/2024] [Indexed: 07/12/2024]
Abstract
Diosmetin, a natural occurring flavonoid, is primarily found in citrus fruits, beans, and other plants. Diosmetin demonstrates a variety of pharmacological activities, including anticancer, antioxidant, anti-inflammatory, antibacterial, metabolic regulation, cardiovascular function improvement, estrogenic effects, and others. The process of literature search was done using PubMed, Web of Science and ClinicalTrials databases with search terms containing Diosmetin, content, anticancer, anti-inflammatory, antioxidant, pharmacological activity, pharmacokinetics, in vivo, and in vitro. The aim of this review is to summarize the in vivo, in vitro and clinical studies of Diosmetin over the last decade, focusing on studies related to its anticancer, anti-inflammatory, and antioxidant activities. It is found that DIO has significant therapeutic effects on skin and cardiovascular system diseases, and its research in pharmacokinetics and toxicology is summarized. It provides the latest information for researchers and points out the limitations of current research and areas that should be strengthened in future research, so as to facilitate the relevant scientific research and clinical application of DIO.
Collapse
Affiliation(s)
- Zihao Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuipeng Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jijiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolian Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Vasilev H, Šmejkal K, Jusková S, Vaclavik J, Treml J. Five New Tamarixetin Glycosides from Astragalus thracicus Griseb. Including Some Substituted with the Rare 3-Hydroxy-3-methylglutaric Acid and Their Collagenase Inhibitory Effects In Vitro. ACS OMEGA 2024; 9:18023-18031. [PMID: 38680358 PMCID: PMC11044239 DOI: 10.1021/acsomega.3c09677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024]
Abstract
Along with the known kaempferol-3-O-α-l-rhamnopyranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (1), five new flavonoids, containing the rarely isolated aglycon tamarixetin, were isolated from a methanolic extract of the endemic Balkan species Astragalus thracicus Griseb. Three of the new compounds are substituted with 3-hydroxy-3-methylglutaryl residue (HMG), untypical for the genus Astragalus. The compounds were identified as tamarixetin-3-O-α-l-rhamnopyranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (2), tamarixetin-3-O-(2,6-di-O-α-l-rhamnopyranosyl)-β-d-galactopyranoside (3), tamarixetin 3-O-β-d-apiofuranosyl-(1 → 2)-β-d-galactopyranoside (4), tamarixetin-3-O-β-d-apiofuranosyl-(1 → 2)-[6-O-(3-hydroxy-3-methylglutaryl)]-β-d-galactopyranoside (5), and tamarixetin-3-O-β-d-apiofuranosyl-(1 → 2)-[α-l-rhamnopyranosyl-(1 → 6)]-β-d-galactopyranoside (6). Selected compounds from A. thracicus were tested to evaluate their anticollagenase activity. The greatest effect was observed for quercetin-3-O-β-d-apiofuranosyl-(1 → 2)-β-d-galactopyranoside, possibly due to the presence of an ortho-dihydroxy arrangement of flavonoid ring B. The effect on collagenase and elastase was further evaluated also by in silico study, and the test compounds showed some level of in silico interaction.
Collapse
Affiliation(s)
- Hristo Vasilev
- Department
of Pharmacognosy, Faculty of Pharmacy, Medical
University, 2 Dunav Street, Sofia 1000, Bulgaria
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Karel Šmejkal
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Sabina Jusková
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Jiri Vaclavik
- Department
of Natural Drugs, Faculty of Pharmacy, Masaryk
University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| | - Jakub Treml
- Department
of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, Brno 61200, Czech Republic
| |
Collapse
|
5
|
Fang Y, Xiang W, Cui J, Jiao B, Su X. Anti-Inflammatory Properties of the Citrus Flavonoid Diosmetin: An Updated Review of Experimental Models. Molecules 2024; 29:1521. [PMID: 38611801 PMCID: PMC11013832 DOI: 10.3390/molecules29071521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Inflammation is an essential contributor to various human diseases. Diosmetin (3',5,7-trihydroxy-4'-methoxyflavone), a citrus flavonoid, can be used as an anti-inflammatory agent. All the information in this article was collected from various research papers from online scientific databases such as PubMed and Web of Science. These studies have demonstrated that diosmetin can slow down the progression of inflammation by inhibiting the production of inflammatory mediators through modulating related pathways, predominantly the nuclear factor-κB (NF-κB) signaling pathway. In this review, we discuss the anti-inflammatory properties of diosmetin in cellular and animal models of various inflammatory diseases for the first time. We have identified some deficiencies in current research and offer suggestions for further advancement. In conclusion, accumulating evidence so far suggests a very important role for diosmetin in the treatment of various inflammatory disorders and suggests it is a candidate worthy of in-depth investigation.
Collapse
Affiliation(s)
- Yangyang Fang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Wei Xiang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Jinwei Cui
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control for Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400712, China;
| | - Xuesu Su
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; (Y.F.); (W.X.); (J.C.)
| |
Collapse
|
6
|
Di Lorenzo R, Maisto M, Ricci L, Piccolo V, Marzocchi A, Greco G, Tenore GC, Laneri S. Annurca Apple Oleolite as Functional Ingredient for the Formulation of Cosmetics with Skin-Antiaging Activity. Int J Mol Sci 2024; 25:1677. [PMID: 38338954 PMCID: PMC10855134 DOI: 10.3390/ijms25031677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
The identification of natural remedies for the management of the skin aging process is an increasingly growing issue. In this context, ursolic acid (UA), a ubiquitous molecule, mainly contained in Annurca apple (AA) fruit, has demonstrated valuable cosmetic potential. To this end, in the current study, the AA oleolite (AAO, extract in sunflower oil containing 784.40 ± 7.579 µg/mL of UA) was evaluated to inhibit porcine elastase enzymatic reactions through a validated spectrophotometric method. AAO has shown a valuable capacity to contrast the elastase enzyme with a calculated IC50 of 212.76 mg/mL, in comparison to UA (IC50 of 135.24 μg/mL) pure molecules and quercetin (IC50 of 72.47 μg/mL) which are used as positive controls. In this context and in view of the valuable antioxidant potential of AAO, its topical formulation with 2.5% (w/w) AAO was tested in a placebo-controlled, double-blind, two-arm clinical study on 40 volunteers. Our results indicated that after 28 days of treatment, a significant reduction of the nasolabial fold (-7.2 vs. baseline T0, p < 0.001) and forehead wrinkles (-5.3 vs. baseline T0, p < 0.001) were registered in combination with a valuable improvement of the viscoelastic skin parameters, where skin pliability/firmness (R0) and gross elasticity (R2) were significantly ameliorated (-13% vs. baseline T0, p < 0.001 for R0 and +12% vs. baseline T0, p < 0.001 for R2). Finally, considering the positive correlation between skin elasticity and hydration, the skin moisture was evaluated through the estimation of Trans epidermal water loss (TEWL) and skin conductance.
Collapse
Affiliation(s)
- Ritamaria Di Lorenzo
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Maria Maisto
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Lucia Ricci
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Vincenzo Piccolo
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Adua Marzocchi
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Giovanni Greco
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| | - Gian Carlo Tenore
- ChimNutra Labs, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (V.P.); (A.M.); (G.C.T.)
| | - Sonia Laneri
- RD Cosmetics, Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (R.D.L.); (L.R.); (G.G.); (S.L.)
| |
Collapse
|
7
|
Varshney KK, Gupta JK, Srivastava R. Unveiling the Molecular Mechanism of Diosmetin and its Impact on Multifaceted Cellular Signaling Pathways. Protein Pept Lett 2024; 31:275-289. [PMID: 38629379 DOI: 10.2174/0109298665294109240323033601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Diosmetin is an O-methylated flavone and the aglycone part of the flavonoid glycosides diosmin that occurs naturally in citrus fruits. Pharmacologically, diosmetin is reported to exhibit anticancer, antimicrobial, antioxidant, oestrogenic, and anti-inflammatory activities. OBJECTIVE This comprehensive review was aimed to critically explore diverse pharmacological activities exhibited by diosmetin. Along with that, this review can also identify potential research areas with an elucidation of the multifactorial underlying signaling mechanism of action of diosmetin in different diseases. METHODS A comprehensive collection of evidence and insights was obtained from scientific journals and books from physical libraries and electronic platforms like Google Scholar and PubMed. The time frame selected was from year 1992 to July 2023. RESULTS The review delves into diosmetin's impact on cellular signaling pathways and its potential in various diseases. Due to its ability to modulate signaling pathways and reduce oxidative stress, it can be suggested as a potential versatile therapeutic agent for mitigating oxidative stressassociated pathogenesis. CONCLUSION The amalgamation of the review underscores diosmetin's promising role as a multifaceted therapeutic agent, highlighting its potential for drug development and clinical applications.
Collapse
Affiliation(s)
| | | | - Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, Uttar Pradesh, India
| |
Collapse
|
8
|
Awad N, Hetzel JD, Bhupalam V, Nestor MS. Stasis Dermatitis: Pathophysiology, Current Treatment Paradigms, and the Use of the Flavonoid Diosmin. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2024; 17:15-23. [PMID: 38298753 PMCID: PMC10826834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Objective We sought to examine the role of flavonoids, particularly diosmin, as a therapeutic agent for stasis dermatitis (SD) through discussion of pathophysiology, current treatment paradigms, potential mechanisms of action, and a systematic review of evidence on clinical efficacy. Methods In addition to articles on pathophysiology and standard treatment, a search of PubMed was conducted using the following query: ("Diosmin" OR "MPFF" OR "Micronized Purified Flavonoid Fraction" OR "Flavonoid") AND ("Stasis Dermatitis" OR "Venous Ulcer" OR "Lipodermatosclerosis"). Emphasis was placed on studies that were randomized controlled trials examining an oral flavonoid against a placebo or standard of care. Results Diosmin is effective at improving stasis changes, increasing ulcer healing frequency, decreasing the time to ulcer healing, and reducing tissue edema. They also cause significant improvement in patient quality of life and reduction of venous symptoms. Diosmin has been shown to have a favorable safety profile with very few mild adverse events which did not differ significantly from placebo. Flavonoids also appear to be effective for other dermatologic conditions, including rosacea and senile purpura. Conclusion There is a growing body of evidence indicating that diosmin has therapeutic efficacy in managing stasis dermatitis. Data from studies in diseases with pathogenic similarities suggests the potential for even broader dermatologic applications.
Collapse
Affiliation(s)
- Nardin Awad
- All authors are with the Center for Clinical and Cosmetic Research in Aventura, Florida
| | - John D. Hetzel
- All authors are with the Center for Clinical and Cosmetic Research in Aventura, Florida
| | - Vishnu Bhupalam
- All authors are with the Center for Clinical and Cosmetic Research in Aventura, Florida
| | - Mark S. Nestor
- All authors are with the Center for Clinical and Cosmetic Research in Aventura, Florida
- Additionally, Dr. Nestor is with the Department of Dermatology and Cutaneous Surgery, as well as the Department of Surgery, Division of Plastic Surgery, at the University of Miami Miller School of Medicine in Miami, Florida
| |
Collapse
|
9
|
Wujec M, Feldo M. Can We Improve Diosmetin Activity? The State-of-the-Art and Promising Research Directions. Molecules 2023; 28:7910. [PMID: 38067639 PMCID: PMC10707807 DOI: 10.3390/molecules28237910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Diosmetin is a natural substance widely distributed in nature, with documented multidirectional biological effects. The wide spectrum of biological activity of diosmetin gives hope that derivatives of this flavonoid may also be used as drugs or dietary supplements used in many diseases. Modification of the structure may, on the one hand, lead to an increase in biological potency, new biological activity, or an increase in solubility and thus bioavailability. This is an important direction of research because the use of pure diosmetin is limited due to its low bioavailability. This work is an attempt to collect information on the possibility of modifying the structure of diosmetin and its impact on biological activity.
Collapse
Affiliation(s)
- Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4a St., 20-093 Lublin, Poland
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| |
Collapse
|
10
|
Wang H, Zhang X, Liu Y, Zhang Y, Wang Y, Peng Y, Ding Y. Diosmetin-7-O-β-D-glucopyranoside suppresses endothelial-mesenchymal transformation through endoplasmic reticulum stress in cardiac fibrosis. Clin Exp Pharmacol Physiol 2023; 50:789-805. [PMID: 37430476 DOI: 10.1111/1440-1681.13802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
Diosmetin-7-O-β-D-glucopyranoside (Diosmetin-7-O-glucoside) is a natural flavonoid glycoside known to have a therapeutic application for cardiovascular diseases. Cardiac fibrosis is the main pathological change in the end stage of cardiovascular diseases. Endothelial-mesenchymal transformation (EndMT) induced by endoplasmic reticulum stress (ER stress) via Src pathways is involved in the process of cardiac fibrosis. However, it is unclear whether and how diosmetin-7-O-glucoside regulates EndMT and ER stress to treat cardiac fibrosis. In this study, molecular docking results showed that diosmetin-7-O-glucoside bound well to ER stress and Src pathway markers. Diosmetin-7-O-glucoside suppressed cardiac fibrosis induced by isoprenaline (ISO) and reduced the levels of EndMT, ER stress in mice heart. Primary cardiac microvascular endothelial cells (CMECs) were induced by transforming growth factor-β1 (TGF-β1) to perform EndMT. Diosmetin-7-O-glucoside could effectively regulate EndMT and diminish the accumulation of collagen I and collagen III. We also showed that the tube formation in CMECs was restored, and the capacity of migration was partially inhibited. Diosmetin-7-O-glucoside also ameliorated ER stress through the three unfolded protein response branches, as evidenced by organelle structure in transmission electron microscopy images and the expression of protein biomarkers like the glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). Further analysis showed that diosmetin-7-O-glucoside could suppress the expression level of Src phosphorylation, then block EndMT with the maintenance of endothelial appearance and endothelial marker expression. These results suggested that the diosmetin-7-O-glucoside can regulate EndMT through ER stress, at least in part via Src-dependent pathways.
Collapse
Affiliation(s)
- Huahua Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xiaoyu Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yangyang Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yunyun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yingyu Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yunru Peng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yongfang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Pharmacology and Toxicology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Boisnic S, Branchet MC, Quioc-Salomon B, Doan J, Delva C, Gendron C. Anti-Inflammatory and Antioxidant Effects of Diosmetin-3- O-β-d-Glucuronide, the Main Metabolite of Diosmin: Evidence from Ex Vivo Human Skin Models. Molecules 2023; 28:5591. [PMID: 37513462 PMCID: PMC10383842 DOI: 10.3390/molecules28145591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Diosmin is used to relieve chronic venous disease (CVD) symptoms. This study aimed to investigate the anti-inflammatory and antioxidant effects of diosmetin-3-O-β-d-glucuronide, the major metabolite of diosmin, using human skin explants. The explants were exposed to substance P (inflammation model) or UVB irradiation (oxidative model) and to five diosmetin-3-O-β-d-glucuronide concentrations. Inflammation was evaluated through interleukin-8 (IL-8) secretion measurements and capillary dilation observation, and oxidation was evaluated by measuring the hydrogen peroxide levels and observing cyclobutane pyrimidine dimers (CPDs). In substance-P-exposed explants, diosmetin-3-O-β-d-glucuronide induced a significant decrease in IL-8 secretions, with a maximal effect at 2700 pg/mL (-49.6%), and it reduced the proportion of dilated capillaries and the mean luminal cross-sectional area (p < 0.0001 at all tested concentrations), indicating a vasoconstrictive effect. In UVB-irradiated fragments, diosmetin-3-O-β-d-glucuronide induced a significant decrease in hydrogen peroxide production and in the number of CPD-positive cells, reaching a maximal effect at the concentration of 2700 pg/mL (-48.6% and -52.0%, respectively). Diosmetin-3-O-β-d-glucuronide induced anti-inflammatory and antioxidant responses, with the maximal effect being reached at 2700 pg/mL and corresponding to the peak plasma concentration estimated after the oral intake of 600 mg of diosmin, the daily dose usually recommended for the treatment of CVD. These ex vivo findings suggest a protective role of diosmetin-3-O-β-d-glucuronide against inflammatory and oxidative stress affecting the vascular system in CVD pathophysiology.
Collapse
Affiliation(s)
- Sylvie Boisnic
- GREDECO (Group of Research and Evaluation in Dermatology and Cosmetology), 69 Rue de la Tour, 75016 Paris, France
| | - Marie-Christine Branchet
- GREDECO (Group of Research and Evaluation in Dermatology and Cosmetology), 69 Rue de la Tour, 75016 Paris, France
| | - Barbara Quioc-Salomon
- Laboratoire Innotech International, 22 Avenue Aristide Briand, 94110 Arcueil, France
| | - Julie Doan
- Laboratoire Innotech International, 22 Avenue Aristide Briand, 94110 Arcueil, France
| | | | - Célia Gendron
- Laboratoire Innotech International, 22 Avenue Aristide Briand, 94110 Arcueil, France
| |
Collapse
|
12
|
Shahine Y, El-Aal SAA, Reda AM, Sheta E, Atia NM, Abdallah OY, Ibrahim SSA. Diosmin nanocrystal gel alleviates imiquimod-induced psoriasis in rats via modulating TLR7,8/NF-κB/micro RNA-31, AKT/mTOR/P70S6K milieu, and Tregs/Th17 balance. Inflammopharmacology 2023; 31:1341-1359. [PMID: 37010718 DOI: 10.1007/s10787-023-01198-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/17/2023] [Indexed: 04/04/2023]
Abstract
Diosmin is a flavonoid with promising anti-inflammatory and antioxidant properties. However, it has difficult physicochemical characteristics since its solubility demands a pH level of 12, which has an impact on the drug's bioavailability. The aim of this work is the development and characterization of diosmin nanocrystals using anti-solvent precipitation technique to be used for topical treatment of psoriasis. Results revealed that diosmin nanocrystals stabilized with hydroxypropyl methylcellulose (HPMC E15) in ratio (diosmin:polymer; 1:1) reached the desired particle size (276.9 ± 16.49 nm); provided promising colloidal properties and possessed high drug release profile. Additionally, in-vivo assessment was carried out to evaluate and compare the activities of diosmin nanocrystal gel using three different doses and diosmin powder gel in alleviating imiquimod-induced psoriasis in rats and investigating their possible anti-inflammatory mechanisms. Herein, 125 mg of 5% imiquimod cream (IMQ) was applied topically for 5 consecutive days on the shaved backs of rats to induce psoriasis. Diosmin nanocrystal gel especially in the highest dose used offered the best anti-inflammatory effect. This was confirmed by causing the most statistically significant reduction in the psoriasis area severity index (PASI) score and the serum inflammatory cytokines levels. Furthermore, it was capable of maintaining the balance between T helper (Th17) and T regulatory (Treg) cells. Moreover, it tackled TLR7/8/NF-κB, miRNA-31, AKT/mTOR/P70S6K and elevated the TNFAIP3/A20 (a negative regulator of NF-κB) expression in psoriatic skin tissues. This highlights the role of diosmin nanocrystal gel in tackling imiquimod-induced psoriasis in rats, and thus it could be a novel promising therapy for psoriasis.
Collapse
Affiliation(s)
- Yasmine Shahine
- Department of Microbiology & Immunology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Sarah A Abd El-Aal
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
| | - Ahmed M Reda
- Department of Pharmacy, Kut University College, Al Kut, Wasit, 52001, Iraq
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, Cairo, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nouran M Atia
- Department of Pharmaceutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Sherihan Salaheldin Abdelhamid Ibrahim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria (PUA), Canal El- Mahmoudia Street, Smouha, Alexandria, Egypt.
| |
Collapse
|
13
|
Olędzka AJ, Czerwińska ME. Role of Plant-Derived Compounds in the Molecular Pathways Related to Inflammation. Int J Mol Sci 2023; 24:ijms24054666. [PMID: 36902097 PMCID: PMC10003729 DOI: 10.3390/ijms24054666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammation is the primary response to infection and injury. Its beneficial effect is an immediate resolution of the pathophysiological event. However, sustained production of inflammatory mediators such as reactive oxygen species and cytokines may cause alterations in DNA integrity and lead to malignant cell transformation and cancer. More attention has recently been paid to pyroptosis, which is an inflammatory necrosis that activates inflammasomes and the secretion of cytokines. Taking into consideration that phenolic compounds are widely available in diet and medicinal plants, their role in the prevention and support of the treatment of chronic diseases is apparent. Recently, much attention has been paid to explaining the significance of isolated compounds in the molecular pathways related to inflammation. Therefore, this review aimed to screen reports concerning the molecular mode of action assigned to phenolic compounds. The most representative compounds from the classes of flavonoids, tannins, phenolic acids, and phenolic glycosides were selected for this review. Our attention was focused mainly on nuclear factor-κB (NF-κB), nuclear factor erythroid 2-related factor 2 (Nrf2), and mitogen-activated protein kinase (MAPK) signaling pathways. Literature searching was performed using Scopus, PubMed, and Medline databases. In conclusion, based on the available literature, phenolic compounds regulate NF-κB, Nrf2, and MAPK signaling, which supports their potential role in chronic inflammatory disorders, including osteoarthritis, neurodegenerative diseases, cardiovascular, and pulmonary disorders.
Collapse
Affiliation(s)
- Agata J. Olędzka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
| | - Monika E. Czerwińska
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1B Banacha Str., 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-116-61-85
| |
Collapse
|
14
|
Efficacy of topically applied rapamycin-loaded redox-sensitive nanocarriers in a human skin/T cell co-culture model. Int Immunopharmacol 2023; 117:109903. [PMID: 36848792 DOI: 10.1016/j.intimp.2023.109903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
Rapamycin, also known as Sirolimus, is a promising anti-proliferative drug, but its therapeutic use for the topical treatment of inflammatory, hyperproliferative skin disorders is limited by insufficient penetration rates due to its high molecular weight (MW of 914.172 g/mol) and high lipophilicity. We have shown that core multi-shell (CMS) nanocarriers sensitive to oxidative environment can improve drug delivery to the skin. In this study, we investigated the mTOR inhibitory activity of these oxidation-sensitive CMS (osCMS) nanocarrier formulations in an inflammatory ex vivo human skin model. In this model, features of inflamed skin were introduced by treating the ex vivo tissue with low-dose serine protease (SP) and lipopolysaccharide (LPS), while phorbol 12-myristate 13-acetate and ionomycin were used to stimulate IL-17A production in the co-cultured SeAx cells. Furthermore, we tried to elucidate the effects of rapamycin on single cell populations isolated from skin (keratinocytes, fibroblast) as well as on SeAx cells. Further, we measured possible effects of the rapamycin formulations on dendritic cell (DC) migration and activation. The inflammatory skin model enabled the assessment of biological readouts at both the tissue and T cell level. All investigated formulations successfully delivered rapamycin across the skin as revealed by reduced IL-17A levels. Nevertheless, only the osCMS formulations reached higher anti-inflammatory effects in the skin compared to the control formulations with a significant downregulation of mTOR activity. These results indicate that osCMS formulations could help to establish rapamycin, or even other drugs with similar physico-chemical properties, in topical anti-inflammatory therapy.
Collapse
|
15
|
Anwer MK, Aldawsari MF, Iqbal M, Almutairy BK, Soliman GA, Aboudzadeh MA. Diosmin-Loaded Nanoemulsion-Based Gel Formulation: Development, Optimization, Wound Healing and Anti-Inflammatory Studies. Gels 2023; 9:gels9020095. [PMID: 36826265 PMCID: PMC9956956 DOI: 10.3390/gels9020095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
The wound-healing process is complex and prone to interruption or failure, which can result in the development of chronic wounds that never heal. This can be overcome by seeking prompt medical attention, which will reduce the likelihood of complications and speed up the healing of the cutaneous wound. It has been established that functionalized engineered biomaterials are a possible strategy for starting skin wound care. The purpose of the current study is to develop a diosmin (DSM)-loaded nanoemulsion (NE)-based gel formulation and to investigate its wound healing and anti-inflammatory activity on rats. The DSM-loaded NEs (F1-F17) were developed and optimized with the help of Box-Behnken Design Expert. The DSM-Nes were developed using lauroglycol 90 (LG90®) as oil, Tween-80 as surfactant and transcutol-HP (THP) as co-surfactant. The optimized Nes showed globule size (41 ± 0.07 nm), polydispersity index (PDI) (0.073 ± 0.008) and percentage of entrapment efficiency (%EE) (87 ± 0.81%). This optimized DSM-loaded NEs (F1) was further evaluated and incorporated into 1% carbopol 940 gel. F1-loaded gel was then characterized for drug content, spreadability, in vitro release, wound healing, and anti-inflammatory studies. The developed gel of DSM was found to show significantly better (p < 0.05) wound-healing and anti-inflammatory activity.
Collapse
Affiliation(s)
- Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Correspondence:
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
- Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
| | - Gamal A. Soliman
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia
- Department of Pharmacology, National Research Centre, Giza 12622, Egypt
| | - M. Ali Aboudzadeh
- CNRS, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, University Pau & Pays Adour, E2S UPPA, IPREM, UMR5254, 64000 Pau, France
| |
Collapse
|
16
|
Wójciak M, Feldo M, Borowski G, Kubrak T, Płachno BJ, Sowa I. Antioxidant Potential of Diosmin and Diosmetin against Oxidative Stress in Endothelial Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238232. [PMID: 36500323 PMCID: PMC9739697 DOI: 10.3390/molecules27238232] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022]
Abstract
Phlebotropic flavonoids, including diosmin and its aglycone diosmetin, are natural polyphenols widely used in the prevention and treatment of chronic venous insufficiency (CVI). As oxidative stress plays an important role in the development of pathophysiology of the cardiovascular system, the study aimed to investigate the protective effects of diosmin and diosmetin on hydrogen peroxide (H2O2)-induced oxidative stress in endothelial cells. The cells were pretreated with different concentrations of the flavonoid prior to the H2O2 exposure. The cell viability, the level of intracellular reactive oxygen species (ROS), the activity of cellular antioxidant enzymes-including superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase GPx-and the malondialdehyde (MDA) level were assessed. It was found that the H2O2-induced oxidative stress was ameliorated by diosmin/diosmetin in a concentration-dependent manner. The flavonoids restored the activity of cellular antioxidant enzymes and lowered the MDA level upregulated by the H2O2 exposure. These results indicate that diosmin and diosmetin may prevent oxidative stress in endothelial cells; therefore, they may protect against the development and progression of oxidative-stress-related disorders.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| | - Grzegorz Borowski
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| | - Tomasz Kubrak
- Department of Biochemistry and General Chemistry, Medical College of The University of Rzeszów, 2A Kopisto St., 35-959 Rzeszów, Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9 St., 30-387 Cracow, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-817185551
| |
Collapse
|