1
|
Gomes SF, Valois A, Estevinho MM, Santiago M, Magro F. Association of Gut Microbiome and Dipeptidyl Peptidase 4 in Immune-Mediated Inflammatory Bowel Disease: A Rapid Literature Review. Int J Mol Sci 2024; 25:12852. [PMID: 39684563 DOI: 10.3390/ijms252312852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by dysregulated immune responses and chronic tissue inflammation. In the setting of inflammatory bowel disease (IBD), dipeptidyl peptidase 4 (DPP4) and gut microorganisms have been proved to interplay, potentially influenced by dietary factors. This rapid review aimed to study the DPP4-gut microbiome link in IBD. A search across five databases and two gray literature sources identified seven relevant studies reporting data on DPP4 and gut microbiome in patients with IBD-related IMIDs or in vitro or in vivo models: one cross-sectional, one in vitro, and five in vivo studies. The findings revealed a significant impact of DPP4 and its substrates, i.e., glucagon-like peptide-1/2 (GLP-1/2), on the composition of gut microbiome and on the development of dysbiosis. Increased DPP4 activity is associated with decreased GLP-1/2; increased pathogenic bacterial phyla such as Actinobacteria, Bacteroidetes, Deferribacteres, Firmicutes, Fusobacteriota, Proteobacteria, and Verrucomicrobia; and decreased alpha diversity of beneficial gut microbes, including Clostridiaceae, Lachnospiraceae, and Ruminococcaceae families and short-chain fatty acid-producing bacteria like Odoribacter and Butryvibrio spp., with exacerbation of intestinal inflammation. This overview revealed that understanding the DPP4-gut microbiome association is critical for the development of DPP4-targeted therapeutic strategies to guarantee gut microbiome balance and modulation of immune response in IBD.
Collapse
Affiliation(s)
- Sandra F Gomes
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Unit of Medical Education, Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
| | - André Valois
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal
| | - Maria Manuela Estevinho
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, 4200-450 Porto, Portugal
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, 4434-502 Vila Nova de Gaia, Portugal
| | - Mafalda Santiago
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal
| | - Fernando Magro
- Unit of Pharmacology and Therapeutics, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- RISE-Health, Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Unit of Clinical Pharmacology, São João University Hospital Center, 4200-319 Porto, Portugal
- Portuguese Study Group of Inflammatory Bowel Disease (GEDII), 4200-450 Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), Faculty of Medicine, University of Porto (FMUP), 4200-450 Porto, Portugal
- Department of Gastroenterology, São João University Hospital Center, 4200-319 Porto, Portugal
| |
Collapse
|
2
|
Morones J, Pérez M, Muñoz M, Sánchez E, Ávila M, Topete J, Ventura J, Martínez S. Evaluation of the Effect of an α-Adrenergic Blocker, a PPAR-γ Receptor Agonist, and a Glycemic Regulator on Chronic Kidney Disease in Diabetic Rats. Int J Mol Sci 2024; 25:11372. [PMID: 39518925 PMCID: PMC11545748 DOI: 10.3390/ijms252111372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/03/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Diabetic nephropathy (DN) is a globally widespread complication of diabetes mellitus (DM). Research indicates that pioglitazone and linagliptin mitigate the risk of DN by reducing inflammation, oxidative stress, and fibrosis. The role of tamsulosin in DN is less studied, but it may contribute to reducing oxidative stress and inflammatory responses. The protective effects of combining pioglitazone, linagliptin, and tamsulosin on the kidneys have scarcely been investigated. This study examines the individual and combined effects of these drugs on DN in Wistar rats. Diabetic rats were treated with tamsulosin, pioglitazone, and linagliptin for six weeks. We assessed food and water intake, estimated glomerular filtration rate (eGFR), histological markers, urea, creatinine, glucose, NF-κB, IL-1, IL-10, TGF-β, and Col-IV using immunofluorescence and qPCR. The DN group exhibited hyperglycaemia, reduced eGFR, and tissue damage. Tamsulosin and linagliptin improved eGFR, decreased urinary glucose, and repaired tissue damage. Pioglitazone and its combinations restored serum and urinary markers and reduced tissue damage. Linagliptin lowered serum creatinine and tissue injury. In conclusion, tamsulosin, linagliptin, and pioglitazone demonstrated renoprotective effects in DN.
Collapse
Affiliation(s)
- Jorge Morones
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
| | - Mariana Pérez
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
| | - Martín Muñoz
- Department of Chemistry, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
| | - Esperanza Sánchez
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
- Family Medicine Unit 8, Instituto Mexicano del Seguro Social (IMSS), Aguascalientes 20180, Mexico
| | - Manuel Ávila
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
| | - Jorge Topete
- Department of Nephrology, Regional General Hospital No. 46, Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44910, Mexico;
| | - Javier Ventura
- Department of Morphology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (J.M.); (M.P.); (E.S.); (M.Á.)
| | - Sandra Martínez
- Department of Microbiology, Basic Sciences Center, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| |
Collapse
|
3
|
Drzymała A. The Functions of SARS-CoV-2 Receptors in Diabetes-Related Severe COVID-19. Int J Mol Sci 2024; 25:9635. [PMID: 39273582 PMCID: PMC11394807 DOI: 10.3390/ijms25179635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) is considered a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor of high importance, but due to its non-ubiquitous expression, studies of other proteins that may participate in virus internalisation have been undertaken. To date, many alternative receptors have been discovered. Their functioning may provide an explanation for some of the events observed in severe COVID-19 that cannot be directly explained by the model in which ACE2 constitutes the central point of infection. Diabetes mellitus type 2 (T2D) can induce severe COVID-19 development. Although many mechanisms associated with ACE2 can lead to increased SARS-CoV-2 virulence in diabetes, proteins such as basigin (CD147), glucose-regulated protein 78 kDa (GRP78), cluster of differentiation 4 (CD4), transferrin receptor (TfR), integrins α5β1/αvβ3, or ACE2 co-receptors neuropilin 2 (NRP2), vimentin, and even syalilated gangliosides may also be responsible for worsening the COVID-19 course. On the other hand, some others may play protective roles. Understanding how diabetes-associated mechanisms can induce severe COVID-19 via modification of virus receptor functioning needs further extensive studies.
Collapse
Affiliation(s)
- Adam Drzymała
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
4
|
He X, Dou L, Wang J, Xia L, Miao J, Yan Y. Nobiletin regulates the proliferation and migration of ovarian cancer A2780 cells via DPP4 and TXNIP. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03334-x. [PMID: 39102034 DOI: 10.1007/s00210-024-03334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
Nobiletin is an active compound extracted from citrus fruits. Research has indicated that nobiletin has a potential inhibitory effect on ovarian cancer (OV). However, the mechanism of action remains unclear. The OV A2780 cells were treated using nobiletin, cell viability was examined using a cell counting kit-8 experiment, and cell migration was examined with a wound healing experiment. Nobiletin targets were retrieved from target databases. Differentially expressed genes (DEG) and weighted gene co-expression network analysis (WGCNA) were conducted on GSE26712 (OV). The intersection of the critical genes for nobiletin's action on OV and gene enrichment and immune infiltration analyses were performed. The Cancer Genome Atlas-OV data and molecular docking helped validate the findings. After adding nobiletin, cell viability and migration significantly decreased (P < 0.01). A total of 88 nobiletin targets and 1288 DEG were identified. The intersection genes were enriched inflammatory response and response to hypoxia. The most related module obtained from WGCNA contained 414 genes (correlation coefficient = 0.77, P < 0.01). DPP4 and TXNIP were recognized as the hub genes. The abundance of macrophages M2 and mast cells activated significantly enhanced with increased DPP4 expression (P < 0.05). The binding energy between DPP4/TXNIP and nobiletin was - 7.012/ - 7.184 kcal/mol, forming 5/2 hydrogen bonds. Nobiletin effectively suppresses the viability and migration of OV A2780 cells. In this process, DPP4 and TXNIP are the key target, immune regulation, and oxidative stress playing significant roles.
Collapse
Affiliation(s)
- Xiuzhen He
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Lu Dou
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Jie Wang
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Lili Xia
- The Third Surgery, Chongqing City Wanzhou District Shanghai Hospital, Chongqing, 404120, China
| | - Jiawei Miao
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, China
- Key Laboratory, Chongqing Three Gorges Medical College, Chongqing, 404120, China
| | - Yongbo Yan
- Pharmacy Department, The People's Hospital Affiliated to Chongqing Three Gorges Medical College, Chongqing Three Gorges Medical College, No. 27, Guoben Road, Wanzhou District, Chongqing, 404197, China.
| |
Collapse
|
5
|
Kim NH, Hamadani M, Abedin S. New investigational drugs for steroid-refractory acute graft-versus-host disease: a review of the literature. Expert Opin Investig Drugs 2024; 33:791-799. [PMID: 38973782 PMCID: PMC11305901 DOI: 10.1080/13543784.2024.2377322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Steroid-refractory acute graft-versus-host disease (SR-aGVHD) remains a formidable obstacle in the field of allogeneic hematopoietic cell transplantation (allo-HCT), significantly contributing to patient morbidity and mortality. The current therapeutic landscape for SR-aGVHD is limited, often yielding suboptimal results, thereby emphasizing the urgent need for innovative and effective treatments. AREAS COVERED In light of the pivotal REACH2 trial, ruxolitinib phosphate, a Janus kinase inhibitor, has gained prominence as the standard treatment for SR-aGVHD. Nevertheless, a considerable number of patients either do not respond to or cannot tolerate this therapy. This review delves into emerging treatments for SR-aGVHD, including mesenchymal stromal cells (MSCs), fecal microbiota transplantation (FMT), CD3/CD7 blockade, neihulizumab, begelomab, tocilizumab, and vedolizumab. While some of these agents have shown encouraging results in early-phase trials, issues such as treatment-related toxicities and inconsistent responses in larger studies highlight the necessity for ongoing research. EXPERT OPINION Current trials exploring new agents and combination therapies offer hope for fulfilling the unmet clinical needs in SR-aGVHD, potentially leading to more effective and precise treatment strategies.
Collapse
Affiliation(s)
- Na Hyun Kim
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Mehdi Hamadani
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| | - Sameem Abedin
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA
| |
Collapse
|
6
|
McCartney EE, Chung Y, Buechler MB. Life of Pi: Exploring functions of Pi16+ fibroblasts. F1000Res 2024; 13:126. [PMID: 38919948 PMCID: PMC11196929 DOI: 10.12688/f1000research.143511.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 06/27/2024] Open
Abstract
Fibroblasts are mesenchymal cells that are responsible for creating and maintaining tissue architecture through the production of extracellular matrix. These cells also play critical roles in processes such as wound repair and immune modulation in normal tissues and various disease states including fibrosis, autoimmunity, and cancer. Fibroblasts have a complex repertoire of functions that vary by organ, inflammatory state, and the developmental stage of an organism. How fibroblasts manage so many functions in such a context-dependent manner represents a gap in our understanding of these cells. One possibility is that a tissue-resident precursor cell state exists that provides the fibroblast lineage with flexibility during growth, inflammation, or other contexts that require dynamic tissue changes. Recent work has suggested that a precursor fibroblast cell state is marked by expression of Peptidase inhibitor 16 ( Pi16). This review aims to concatenate and compare studies on fibroblasts that express Pi16 to clarify the roles of this cell state in fibroblast lineage development and other functions.
Collapse
Affiliation(s)
- Erika E. McCartney
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Yein Chung
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Matthew B. Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
7
|
Hu X, Jiang C, Gu Y, Xue X. Exploring the conformational dynamics and key amino acids in the CD26-caveolin-1 interaction and potential therapeutic interventions. Medicine (Baltimore) 2024; 103:e38367. [PMID: 39259075 PMCID: PMC11142805 DOI: 10.1097/md.0000000000038367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/27/2024] [Accepted: 05/03/2024] [Indexed: 09/12/2024] Open
Abstract
This study aimed to decipher the interaction between CD26 and caveolin-1, key proteins involved in cell signaling and linked to various diseases. Using computational methods, we predicted their binding conformations and assessed stability through 100 ns molecular dynamics (MD) simulations. We identified two distinct binding conformations (con1 and con4), with con1 exhibiting superior stability. In con1, specific amino acids in CD26, namely GLU237, TYR241, TYR248, and ARG147, were observed to engage in interactions with the F-J chain of Caveolin-1, establishing hydrogen bonds and cation or π-π interactions. Meanwhile, in con4, CD26 amino acids ARG253, LYS250, and TYR248 interacted with the J chain of Caveolin-1 via hydrogen bonds, cation-π interactions, and π-π interactions. Virtual screening also revealed potential small-molecule modulators, including Crocin, Poliumoside, and Canagliflozin, that could impact this interaction. Additionally, predictive analyses were conducted on the potential bioactivity, drug-likeness, and ADMET properties of these three compounds. These findings offer valuable insights into the binding mechanism, paving the way for new therapeutic strategies. However, further validation is required before clinical application. In summary, we provide a detailed understanding of the CD26 and caveolin-1 interaction, identifying key amino acids and potential modulators, essential for developing targeted therapies.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, Shenzhen, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, Shenzhen, China
| | - Yanli Gu
- Medical Research Center, People's Hospital of Longhua, Shenzhen, China
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, Shenzhen, China
| |
Collapse
|
8
|
Li Y, Zhang Q, Yang R, Zhan Y, Li Z, Dai S, Chen D, Chen L, Ruggiero A, Ye C, Lu Y, Zhou E, Dong R, Dong K. Characterization of the malignant cells and microenvironment of infantile fibrosarcoma via single-cell RNA sequencing. Transl Pediatr 2024; 13:596-609. [PMID: 38715675 PMCID: PMC11071021 DOI: 10.21037/tp-24-66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/15/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Infantile fibrosarcoma (IFS) is the most prevalent soft tissue sarcoma in children under 1 year old and is known for its rapid growth. The tumor lacks specific immunohistochemical tumor marker and a general view of tumor microenvironment (TME). Its primary therapeutic intervention places patients at a risk of disability or mutilation. This study aimed to elucidate the universal transcriptional characteristics of IFS and explore novel targets for diagnosis and therapy using single-cell RNA sequencing (scRNA-seq). METHODS Fresh tissue samples of IFS for scRNA-seq were collected from four patients before other treatments were administered. We conducted cell clustering, inferring copy number variation from scRNA-seq (InferCNV) analysis, gene differential expression analysis, cell function evaluation, Pearson correlation analysis, and cell-cell and ligand-receptor interaction analysis to investigate the distinct ecosystem of IFS. RESULTS According to the single-cell resolution data, we depicted the cell atlas of IFS, which comprised 14 cell populations. Through comparison with normal cells, the malignant cells were distinguished, and potential novel markers (POSTN, IGFBP2 and CTHRC1) were identified. We also found four various functional malignant cell subtypes, three of which exhibited cancer stem cells (CSCs) phenotypes, and investigated the interplay between these subtypes and nonmalignant cells in the TME of IFS. Endothelial cells and macrophages were found to dominate the cell-cell communication landscape within the microenvironment, promoting tumorigenesis via multiple receptor-ligand interactions. CONCLUSIONS This study provides a comprehensive characterization of the tumor transcriptome and TME of IFS at the cellular level, offering valuable insights for clinically significant advancements in the immunohistochemical diagnosis and treatment of IFS.
Collapse
Affiliation(s)
- Yi Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Qingchi Zhang
- Department of Pediatric Surgery, Xiamen Children’s Hospital, Xiamen Key Laboratory of Pediatric General Surgery Diseases, Xiamen, China
| | - Ran Yang
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Zifeng Li
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | | | | | - Chunjing Ye
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Yifei Lu
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Enqing Zhou
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children’s Hospital of Fudan University, Shanghai Key Laboratory of Birth Defects, Shanghai, China
| |
Collapse
|
9
|
Troisi A, Schrank M, Bellezza I, Fallarino F, Pastore S, Verstegen JP, Pieramati C, Di Michele A, Talesa VN, Martìnez Barbitta M, Orlandi R, Polisca A. Expression of CD13 and CD26 on extracellular vesicles in canine seminal plasma: preliminary results. Vet Res Commun 2024; 48:357-366. [PMID: 37707657 PMCID: PMC10811140 DOI: 10.1007/s11259-023-10202-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
Canine seminal plasma is a complex fluid containing proteins, peptides, enzymes, hormones as well as extracellular vesicles that are involved in many physiological and pathological processes including reproduction. We examined the expression of the extracellular vesicles surface antigens Aminopeptidase-N (CD13) and Dipeptidyl peptidase IV (CD26) by flow cytometry. For this study, third fraction of the ejaculate, from fertile adult male German Shepherd dogs, was manually collected twice, two days apart. FACS analyses revealed that CD13 and CD26 are co-expressed on the 69.3 ± 3.7% of extracellular vesicles and only a 2.0 ± 0.5% of extracellular vesicles express CD26 alone. On the other hand, 28.6 ± 3.6% of seminal EVs express CD13 alone. Our results agree with the hypothesis that CD26 needs to be co-expressed with other signal-transducing molecules, while CD13, can perform functions independently of the presence or co-expression of CD26. The results obtained in normal fertile dogs could represent physiological expression of these enzymes. Therefore, it would be interesting to carry out further studies to evaluate the expression of CD13 and CD26 on extracellular vesicles as biomarker for prostate pathological condition in dogs.
Collapse
Affiliation(s)
- Alessandro Troisi
- School of Bioscience and Veterinary Medicine, Università Di Camerino, Via Circonvallazione 93/95, 62024, Matelica (Macerata), Italy
| | - Magdalena Schrank
- Department of Animal Medicine, Production and Health Università Degli Studi Di Padova, Agripolis Viale Dell'Università - 35020 Legnaro, Padua, Italy
| | - Ilaria Bellezza
- Department of Medicine and Surgery, Università Di Perugia, P.Le Gambuli, 06132, Perugia, Italy
| | - Francesca Fallarino
- Department of Medicine and Surgery, Università Di Perugia, P.Le Gambuli, 06132, Perugia, Italy
| | - Sara Pastore
- Department of Veterinary Medicine, Università Di Perugia, Via San Costanzo 4, 06126, Perugia, Italy.
| | - John P Verstegen
- TherioExpert LLc. and College of Veterinary Medicine, University of Nottingham, Nottingham, UK
| | - Camillo Pieramati
- Department of Veterinary Medicine, Università Di Perugia, Via San Costanzo 4, 06126, Perugia, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy
| | - Vincenzo Nicola Talesa
- Department of Medicine and Surgery, Università Di Perugia, P.Le Gambuli, 06132, Perugia, Italy
| | - Marcelo Martìnez Barbitta
- Department of Veterinary Medicine, Università Di Perugia, Via San Costanzo 4, 06126, Perugia, Italy
- Integral Veterinary Reproductive Service URUGUAY (SRVI_UY); Postgraduate Program, Faculty of Veterinary Medicine - University of Republic (UdelaR - UY), Faculty of Veterinary Medicine - University of Republic (UdelaR - UY), Uruguay, Uruguay
| | - Riccardo Orlandi
- Tyrus Veterinary Clinic, Via Aldo Bartocci, 1G, 05100, Terni, Italy
| | - Angela Polisca
- Department of Veterinary Medicine, Università Di Perugia, Via San Costanzo 4, 06126, Perugia, Italy
| |
Collapse
|
10
|
Gauthier C, El Cheikh K, Basile I, Daurat M, Morère E, Garcia M, Maynadier M, Morère A, Gary-Bobo M. Cation-independent mannose 6-phosphate receptor: From roles and functions to targeted therapies. J Control Release 2024; 365:759-772. [PMID: 38086445 DOI: 10.1016/j.jconrel.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
The cation-independent mannose 6-phosphate receptor (CI-M6PR) is a ubiquitous transmembrane receptor whose main intracellular role is to direct enzymes carrying mannose 6-phosphate moieties to lysosomal compartments. Recently, the small membrane-bound portion of this receptor has appeared to be implicated in numerous pathophysiological processes. This review presents an overview of the main ligand partners and the roles of CI-M6PR in lysosomal storage diseases, neurology, immunology and cancer fields. Moreover, this membrane receptor has already been noted for its strong potential in therapeutic applications thanks to its cellular internalization activity and its ability to address pathogenic factors to lysosomes for degradation. A number of therapeutic delivery approaches using CI-M6PR, in particular with enzymes, antibodies or nanoparticles, are currently being proposed.
Collapse
Affiliation(s)
- Corentin Gauthier
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | | | - Elodie Morère
- NanoMedSyn, Montpellier, France; IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | | | - Alain Morère
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | |
Collapse
|
11
|
Drakul M, Čolić M. Immunomodulatory activity of dipeptidyl peptidase-4 inhibitors in immune-related diseases. Eur J Immunol 2023; 53:e2250302. [PMID: 37732495 DOI: 10.1002/eji.202250302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/22/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
Dipeptidyl peptidase-4 (DPP-4), also known as CD26, is a 110-kDa cell surface glycoprotein with enzymatic and signal transducing activity. DPP-4/CD26 is expressed by various cells, including CD4+ and CD8+ T cells, B cells, dendritic cells, macrophages, and NK cells. DPP-4 inhibitors (DPP-4i) were introduced to clinics in 2006 as new oral antihyperglycemic drugs approved for type 2 diabetes mellitus treatment. In addition to glucose-lowering effects, emerging data, from clinical studies and their animal models, suggest that DPP-4i could display anti-inflammatory and immunomodulatory effects as well, but the molecular and immunological mechanisms of these actions are insufficiently investigated. This review focuses on the modulatory activity of DPP-4i in the immune system and the possible application of DPP-4i in other immune-related diseases in patients with or without diabetes.
Collapse
Affiliation(s)
- Marija Drakul
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
| | - Miodrag Čolić
- Medical Faculty Foča, University of East Sarajevo, Foča, Bosnia and Herzegovina
- Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
12
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
13
|
Meneri M, Abati E, Gagliardi D, Faravelli I, Parente V, Ratti A, Verde F, Ticozzi N, Comi GP, Ottoboni L, Corti S. Identification of Novel Biomarkers of Spinal Muscular Atrophy and Therapeutic Response by Proteomic and Metabolomic Profiling of Human Biological Fluid Samples. Biomedicines 2023; 11:1254. [PMID: 37238925 PMCID: PMC10215459 DOI: 10.3390/biomedicines11051254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disease resulting from mutations or deletions in SMN1 that lead to progressive death of alpha motor neurons, ultimately leading to severe muscle weakness and atrophy, as well as premature death in the absence of treatment. Recent approval of SMN-increasing medications as SMA therapy has altered the natural course of the disease. Thus, accurate biomarkers are needed to predict SMA severity, prognosis, drug response, and overall treatment efficacy. This article reviews novel non-targeted omics strategies that could become useful clinical tools for patients with SMA. Proteomics and metabolomics can provide insights into molecular events underlying disease progression and treatment response. High-throughput omics data have shown that untreated SMA patients have different profiles than controls. In addition, patients who clinically improved after treatment have a different profile than those who did not. These results provide a glimpse on potential markers that could assist in identifying therapy responders, in tracing the course of the disease, and in predicting its outcome. These studies have been restricted by the limited number of patients, but the approaches are feasible and can unravel severity-specific neuro-proteomic and metabolic SMA signatures.
Collapse
Affiliation(s)
- Megi Meneri
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Stroke Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Elena Abati
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Delia Gagliardi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Irene Faravelli
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Valeria Parente
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Antonia Ratti
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
- Department Medical Biotechnology and Translational Medicine, University of Milan, 20100 Milan, Italy
| | - Federico Verde
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Nicola Ticozzi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Laboratory of Neuroscience, Department of Neurology, IRCCS Istituto Auxologico Italiano, 20095 Milan, Italy
| | - Giacomo P. Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Linda Ottoboni
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
14
|
Du J, Fu J, Zhang W, Zhang L, Chen H, Cheng J, He T, Fu J. Effect of DPP4/CD26 expression on SARS‑CoV‑2 susceptibility, immune response, adenosine (derivatives m 62A and CD) regulations on patients with cancer and healthy individuals. Int J Oncol 2023; 62:41. [PMID: 36799191 PMCID: PMC9946808 DOI: 10.3892/ijo.2023.5489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
The worldwide COVID‑19 pandemic was brought on by a new coronavirus (SARS Cov‑2). A marker/receptor called Dipeptidyl peptidase 4/CD26(DPP4/CD26) may be crucial in determining susceptibility to tumors and coronaviruses. However, the regulation of DPP4 in COVID‑invaded cancer patients and its role on small molecule compounds remain unclear. The present study used the Human Protein Atlas, Monaco, and Schmiedel databases to analyze the expression of DPP4 in human tissues and immune cells. The association between DPP4 expression and survival in various tumor tissues was compared using GEPIA 2. The DNMIVD database was used to analyze the correlation between DPP4 expression and promoter methylation in various tumors. On the cBioPortal network, the frequency of DPP4 DNA mutations in various cancers was analyzed. The correlation between DPP4 expression and immunomodulators was analyzed by TISIDB database. The inhibitory effects of cordycepin (CD), N6, N6‑dimethyladenosine (m62A) and adenosine (AD) on DPP4 in cancer cells were evaluated. DPP4 was mainly expressed in endocrine tissue, followed by gastrointestinal tract, female tissue (mainly in placenta), male tissue (mainly in prostate and seminal vesicle), proximal digestive tract, kidney, bladder, liver, gallbladder and respiratory system. In immune cells, DPP4 mRNA was mainly expressed in T cells, and its expression was upregulated in esophageal carcinoma, kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma, pancreatic adenocarcinoma, prostate adenocarcinoma, stomach adenocarcinoma, thyroid carcinoma and thymoma. However, it was downregulated in breast invasive carcinoma, kidney chromophobe, lung squamous cell carcinoma and skin cutaneous melanoma. Thus, DPP4 is involved in viral invasion in most types of cancer. The expression of DPP4 could be inhibited by CD, m62A and AD in different tumor cells. Moreover, CD significantly inhibited the formation of GFP‑positive syncytial cells. In vivo experiments with AD injection further showed that AD significantly inhibited lymphocyte activating factor 3 expression. These drugs may have potential to treat COVID‑19 by targeting DPP4. Thus, DPP4 may be medically significant for SARS‑CoV‑2‑infected cancer patients, providing prospective novel targets and concepts for the creation of drugs against COVID‑19.
Collapse
Affiliation(s)
- Jiaman Du
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wenqian Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lianmei Zhang
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China,Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Hanchun Chen
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Tao He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China,Institute for Cancer Medicine and Basic Medical School, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China,Correspondence to: Professor Junjiang Fu or Professor Tao He, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan 646000, P.R. China, E-mail: , E-mail:
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China,Correspondence to: Professor Junjiang Fu or Professor Tao He, Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, Sichuan 646000, P.R. China, E-mail: , E-mail:
| |
Collapse
|