1
|
Deng X, Qiu Z, Chen X, Liu J, Wang X, Li J, Zhang J, Cui X, Fu Y, Jiang M. Exploring the potential mechanism of ginsenoside Rg1 to regulate ferroptosis in Alzheimer's disease based on network pharmacology. Eur J Pharmacol 2024; 979:176859. [PMID: 39067563 DOI: 10.1016/j.ejphar.2024.176859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES To explore the pathogenesis of Alzheimer's disease (AD), the potential targets and signaling pathways of ginsenoside Rg1 against AD were investigated by network pharmacology. METHODS Ginsenoside Rg1 targets were identified through PubChem, PharmMapper, and Uniprot databases, while the GeneCards database was used to examine the respective targets of amyloid precursor protein (APP) and AD. Then, the common targets between ginsenoside Rg1 and APP were explored by the Venny tool, the interaction network diagram between the active components and the targets was built via Cytoscape software, as well as GO enrichment and KEGG pathway annotation analysis were performed. Furthermore, genes associated with ferroptosis were found by the GeneCards and FerrDb databases. Besides, the connection among ginsenoside Rg1, APP, ferroptosis, and AD was predicted and analyzed. Finally, the effects of ginsenosides Rg1 and liproxstain-1 on the proliferation and differentiation of APP/PS1 mice were evaluated by immunohistochemistry. RESULTS Ginsenoside Rg1, APP, ferroptosis, and AD had 12 hub genes. GO enrichment and KEGG pathway annotation analysis showed that EGFR, SRC, protein hydrolysis, protein phosphorylation, the Relaxin pathway, and the FoxO signaling pathway play an important role in the potential mechanism of ginsenoside Rg1's under regulation of ferroptosis anti-AD through the modulation of APP-related signaling pathways. The APP/PS1 mice experiment verified that ginsenosides Rg1 and liproxstain-1 can promote the proliferation and differentiation. CONCLUSION Ginsenoside Rg1, APP and ferroptosis may act on EGFR, SRC, the Relaxin and FoxO signaling pathways to regulate protein metabolism, protein phosphorylation and other pathways to improve AD symptoms.
Collapse
Affiliation(s)
- Xu Deng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Zixiong Qiu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaoshuai Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jiangxiu Liu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaowei Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jie Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Jiankai Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China
| | - Xiaojun Cui
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuan Fu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| | - Mei Jiang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, Department of Human Anatomy, Dongguan Campus, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
2
|
Kim SH, Ju IG, Kim JH, Eo H, Son SR, Jang DS, Oh MS. Linderae Radix Ameliorates Cognitive Dysfunction by Inhibiting Neuroinflammation and Synaptic Damage in Alzheimer's Disease Models. Mol Neurobiol 2023; 60:7196-7207. [PMID: 37542650 DOI: 10.1007/s12035-023-03544-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
Neuroinflammation and synaptic damage are important etiologies associated with the progression of Alzheimer's disease (AD). Linderae Radix (LR) has antioxidant and anti-inflammatory properties. This study investigated whether LR attenuates microglia activation-mediated neuroinflammation and synaptic degeneration and improves AD pathological phenotypes induced by amyloid beta oligomers (AβO) or lipopolysaccharide (LPS) toxicity. For in vitro studies, we treated LR to AβO-stimulated HT22 cells or LR LPS-stimulated BV2 cells. For in vivo studies, we administered LR to mice and AβO was injected by stereotaxic to induce cognitive impairment, neuroinflammation, and synaptic loss. We found that LR increased the cell viability reduced by AβO. Moreover, LR inhibited pro-inflammatory mediators such as nitric oxide (NO), inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2), and downregulated p38 mitogen-activated protein kinase (MAPK) signaling in BV2 cells. Behavioral assessments demonstrated that LR administration significantly improved cognitive decline induced by AβO-injection. Furthermore, we found that microglia activation increased, and the expression of synaptic proteins decreased in the hippocampus of the AβO-injected group, which was alleviated in the LR-treated group. These findings suggest that LR may be a potential candidate for protection against neuroinflammation and synaptic loss, and may prevent or delay AD progression.
Collapse
Affiliation(s)
- Seong Hye Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - In Gyoung Ju
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Jin Hee Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Hyeyoon Eo
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Myung Sook Oh
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
- Department of Oriental Pharmaceutical Science and Kyung Hee East-West Pharmaceutical Research Institute, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
3
|
Wu L, Dong Y, Zhu C, Chen Y. Effect and mechanism of acupuncture on Alzheimer's disease: A review. Front Aging Neurosci 2023; 15:1035376. [PMID: 36936498 PMCID: PMC10020224 DOI: 10.3389/fnagi.2023.1035376] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
With the development trend of an aging society, Alzheimer's disease (AD) has become an urgent problem in the field of medicine worldwide. Cognitive impairment in AD patients leads to a decline in the ability to perform daily living and abnormalities in behavior and personality, causing abnormal psychiatric symptoms, which seriously affect the daily life of patients. Currently, mainly drug therapy is used for AD patients in the clinic, but a large proportion of patients will experience drug efficacy not working, and even some drugs bring severe sleep disorders. Acupuncture, with its unique concept and treatment method, has been validated through a large number of experiments and proved its reliability of acupuncture in the treatment of AD. Many advances have been made in the study of the neurobiological mechanisms of acupuncture in the treatment of AD, further demonstrating the good efficacy and unique advantages of acupuncture in the treatment of AD. This review first summarizes the pathogenesis of AD and then illustrates the research progress of acupuncture in the treatment of AD, which includes the effect of acupuncture on the changes of biochemical indicators in AD in vivo and the specific mechanism of action to exert the therapeutic effect. Changes in relevant indicators of AD similarly further validate the effectiveness of acupuncture treatment. The clinical and mechanistic studies of acupuncture in the treatment of AD are intensified to fit the need for social development. It is believed that acupuncture will achieve new achievements in the treatment of AD as research progresses.
Collapse
Affiliation(s)
- Liu Wu
- Department of Tuina, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuting Dong
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chengcheng Zhu
- Department of Galactophore, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Chen
- Department of Emergency, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Jurcău MC, Andronie-Cioara FL, Jurcău A, Marcu F, Ţiț DM, Pașcalău N, Nistor-Cseppentö DC. The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants (Basel) 2022; 11:2167. [PMID: 36358538 PMCID: PMC9686795 DOI: 10.3390/antiox11112167] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 08/26/2023] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, has increasing incidence, increasing mortality rates, and poses a huge burden on healthcare. None of the currently approved drugs for the treatment of AD influence disease progression. Many clinical trials aiming at inhibiting amyloid plaque formation, increasing amyloid beta clearance, or inhibiting neurofibrillary tangle pathology yielded inconclusive results or failed. Meanwhile, research has identified many interlinked vicious cascades implicating oxidative stress, mitochondrial dysfunction, and chronic neuroinflammation, and has pointed to novel therapeutic targets such as improving mitochondrial bioenergetics and quality control, diminishing oxidative stress, or modulating the neuroinflammatory pathways. Many novel molecules tested in vitro or in animal models have proven efficient, but their translation into clinic needs further research regarding appropriate doses, delivery routes, and possible side effects. Cell-based therapies and extracellular vesicle-mediated delivery of messenger RNAs and microRNAs seem also promising strategies allowing to target specific signaling pathways, but need further research regarding the most appropriate harvesting and culture methods as well as control of the possible tumorigenic side effects. The rapidly developing area of nanotechnology could improve drug delivery and also be used in early diagnosis.
Collapse
Affiliation(s)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Anamaria Jurcău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Florin Marcu
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Mirela Ţiț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| | - Nicoleta Pașcalău
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Delia Carmen Nistor-Cseppentö
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
5
|
Park G, Eo H, Kim D. Rhamnus crenata leaf extracts exhibit anti-inflammatory activity via modulating the Nrf2/HO-1 and NF-κB/MAPK signaling pathways. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.357742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|