1
|
Chapple B, Woodfin S, Moore W. The Perfect Cup? Coffee-Derived Polyphenols and Their Roles in Mitigating Factors Affecting Type 2 Diabetes Pathogenesis. Molecules 2024; 29:751. [PMID: 38398503 PMCID: PMC10891742 DOI: 10.3390/molecules29040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes (T2D) is a growing health concern with an estimated 462 million people having been diagnosed worldwide. T2D is characterized by chronically elevated blood glucose and insulin resistance, which culminate in a diminished function of the β-cell mass in its later stages. This can be perpetuated by and result in inflammation, excess reactive oxygen species production, obesity, and the dysregulation of multiple cellular pathways. Many naturally occurring small molecules have been investigated in terms of their roles in modulating glucose homeostasis and β-cell function. Many of these compounds can be found in commonly used sources of food and drink. Interestingly, a correlation has been observed between coffee consumption and T2D incidence. However, the specific compounds responsible for this correlation and their mechanisms are still somewhat undetermined. This paper reviews recent research findings on the effects of several polyphenols that are either found in coffee or are metabolites of compounds found in coffee (enterodiol, enterolactone, matairesinol, secoisolariciresinol, kaempferol, quercetin, and chlorogenic acid) on glucose homeostasis and health complications associated with glucose dysregulation, with a special emphasis on their potential anti-diabetic effects. The factors that affect polyphenol content in coffee are also addressed.
Collapse
Affiliation(s)
| | | | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA; (B.C.); (S.W.)
| |
Collapse
|
2
|
Tam JP, Huang J, Loo S, Li Y, Kam A. Ginsentide-like Coffeetides Isolated from Coffee Waste Are Cell-Penetrating and Metal-Binding Microproteins. Molecules 2023; 28:6556. [PMID: 37764332 PMCID: PMC10538209 DOI: 10.3390/molecules28186556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Coffee processing generates a huge amount of waste that contains many natural products. Here, we report the discovery of a panel of novel cell-penetrating and metal ion-binding microproteins designated coffeetide cC1a-c and cL1-6 from the husk of two popular coffee plants, Coffea canephora and Coffea liberica, respectively. Combining sequence determination and a database search, we show that the prototypic coffeetide cC1a is a 37-residue, eight-cysteine microprotein with a hevein-like cysteine motif, but without a chitin-binding domain. NMR determination of cC1a reveals a compact structure that confers its resistance to heat and proteolytic degradation. Disulfide mapping together with chemical synthesis reveals that cC1a has a ginsentide-like, and not a hevein-like, disulfide connectivity. In addition, transcriptomic analysis showed that the 98-residue micrcoproten-like coffeetide precursor contains a three-domain arrangement, like ginsentide precursors. Molecular modeling, together with experimental validation, revealed a Mg2+ and Fe3+ binding pocket at the N-terminus formed by three glutamic acids. Importantly, cC1a is amphipathic with a continuous stretch of 19 apolar amino acids, which enables its cell penetration to target intracellular proteins, despite being highly negatively charged. Our findings suggest that coffee by-products could provide a source of ginsentide-like bioactive peptides that have the potential to target intracellular proteins.
Collapse
Affiliation(s)
- James P. Tam
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
| | - Jiayi Huang
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
| | - Shining Loo
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yimeng Li
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Antony Kam
- Synthetic Enzymes and Natural Products Center, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; (J.H.); (S.L.); (Y.L.); (A.K.)
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
3
|
Tsiaka T, Kritsi E, Bratakos SM, Sotiroudis G, Petridi P, Savva I, Christodoulou P, Strati IF, Zoumpoulakis P, Cavouras D, Sinanoglou VJ. Quality Assessment of Ground Coffee Samples from Greek Market Using Various Instrumental Analytical Methods, In Silico Studies and Chemometrics. Antioxidants (Basel) 2023; 12:1184. [PMID: 37371914 DOI: 10.3390/antiox12061184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Coffee is one of the most widely consumed beverages worldwide due to its sensory and potential health-related properties. In the present comparative study, a preparation known as Greek or Turkish coffee, made with different types/varieties of coffee, has been investigated for its physicochemical attributes (i.e., color), antioxidant/antiradical properties, phytochemical profile, and potential biological activities by combining high-throughput analytical techniques, such as infrared spectroscopy (ATR-FTIR), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and in silico methodologies. The results of the current study revealed that roasting degree emerged as the most critical factor affecting these parameters. In particular, the L* color parameter and total phenolic content were higher in light-roasted coffees, while decaffeinated coffees contained more phenolics. The ATR-FTIR pinpointed caffeine, chlorogenic acid, diterpenes, and quinic esters as characteristic compounds in the studied coffees, while the LC-MS/MS analysis elucidated various tentative phytochemicals (i.e., phenolic acids, diterpenes, hydroxycinnamate, and fatty acids derivatives). Among them, chlorogenic and coumaric acids showed promising activity against human acetylcholinesterase and alpha-glucosidase enzymes based on molecular docking studies. Therefore, the outcomes of the current study provide a comprehensive overview of this kind of coffee preparation in terms of color parameters, antioxidant, antiradical and phytochemical profiling, as well as its putative bioactivity.
Collapse
Affiliation(s)
- Thalia Tsiaka
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Eftichia Kritsi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece
| | - Sotirios M Bratakos
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Georgios Sotiroudis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece
| | - Panagiota Petridi
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Ioanna Savva
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Paris Christodoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece
| | - Irini F Strati
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Panagiotis Zoumpoulakis
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Dionisis Cavouras
- Department of Biomedical Engineering, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| | - Vassilia J Sinanoglou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece
| |
Collapse
|
4
|
Nerurkar PV, Yokoyama J, Ichimura K, Kutscher S, Wong J, Bittenbender HC, Deng Y. Medium Roasting and Brewing Methods Differentially Modulate Global Metabolites, Lipids, Biogenic Amines, Minerals, and Antioxidant Capacity of Hawai'i-Grown Coffee ( Coffea arabica). Metabolites 2023; 13:412. [PMID: 36984852 PMCID: PMC10051321 DOI: 10.3390/metabo13030412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
In the United States, besides the US territory Puerto Rico, Hawai'i is the only state that grows commercial coffee. In Hawai'i, coffee is the second most valuable agricultural commodity. Health benefits associated with moderate coffee consumption, including its antioxidant capacity, have been correlated to its bioactive components. Post-harvest techniques, coffee variety, degree of roasting, and brewing methods significantly impact the metabolites, lipids, minerals, and/or antioxidant capacity of brewed coffees. The goal of our study was to understand the impact of roasting and brewing methods on metabolites, lipids, biogenic amines, minerals, and antioxidant capacity of two Hawai'i-grown coffee (Coffea arabica) varieties, "Kona Typica" and "Yellow Catuai". Our results indicated that both roasting and coffee variety significantly modulated several metabolites, lipids, and biogenic amines of the coffee brews. Furthermore, regardless of coffee variety, the antioxidant capacity of roasted coffee brews was higher in cold brews. Similarly, total minerals were higher in "Kona Typica" cold brews followed by "Yellow Catuai" cold brews. Hawai'i-grown coffees are considered "specialty coffees" since they are grown in unique volcanic soils and tropical microclimates with unique flavors. Our studies indicate that both Hawai'i-grown coffees contain several health-promoting components. However, future studies are warranted to compare Hawai'i-grown coffees with other popular brand coffees and their health benefits in vivo.
Collapse
Affiliation(s)
- Pratibha V. Nerurkar
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jennifer Yokoyama
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Kramer Ichimura
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Shannon Kutscher
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Jamie Wong
- Laboratory of Metabolic Disorders and Alternative Medicine, Department of Molecular Biosciences and Bioengineering (MBBE), College of Tropical Agriculture and Human Resources (CTAHR), University of Hawai‘i at Manoa (UHM), Honolulu, HI 96822, USA
| | - Harry C. Bittenbender
- Department of Tropical Plant and Soil Sciences (TPSS), CTAHR, UHM, Honolulu, HI 96822, USA
| | - Youping Deng
- Bioinformatics Core, Departmentt of Quantitative Health Sciences, University of Hawai‘i Cancer Center (UHCC), John A. Burns School of Medicine (JABSOM), UHM, Honolulu, HI 96813, USA
| |
Collapse
|
5
|
Ali A, Cottrell JJ, Dunshea FR. Characterization, Antioxidant Potential, and Pharmacokinetics Properties of Phenolic Compounds from Native Australian Herbs and Fruits. PLANTS (BASEL, SWITZERLAND) 2023; 12:993. [PMID: 36903854 PMCID: PMC10005590 DOI: 10.3390/plants12050993] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In recent decades, plant bioactive phenolic compounds gained much attention due to their various health benefits. Therefore, this study aimed to analyze native Australian river mint (Mentha australis), bush mint (Mentha satureioides), sea parsley (Apium prostratum), and bush tomatoes (Solanum centrale) for their bioactive metabolites, antioxidant potential, and pharmacokinetics properties. LC-ESI-QTOF-MS/MS was applied to elucidate these plants' composition, identification, and quantification of phenolic metabolites. This study tentatively identified 123 phenolic compounds (thirty-five phenolic acids, sixty-seven flavonoids, seven lignans, three stilbenes, and eleven other compounds). Bush mint was identified with the highest total phenolic content (TPC-57.70 ± 4.57 mg GAE/g), while sea parsley contained the lowest total phenolic content (13.44 ± 0.39 mg GAE/g). Moreover, bush mint was also identified with the highest antioxidant potential compared to other herbs. Thirty-seven phenolic metabolites were semi-quantified, including rosmarinic acid, chlorogenic acid, sagerinic acid, quinic acid, and caffeic acid, which were abundant in these selected plants. The most abundant compounds' pharmacokinetics properties were also predicted. This study will develop further research to identify these plants' nutraceutical and phytopharmaceutical potential.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, Faculty of Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
6
|
Antioxidant, Alpha-Glucosidase Inhibition Activities, In Silico Molecular Docking and Pharmacokinetics Study of Phenolic Compounds from Native Australian Fruits and Spices. Antioxidants (Basel) 2023; 12:antiox12020254. [PMID: 36829816 PMCID: PMC9952698 DOI: 10.3390/antiox12020254] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Native Australian fruits and spices are enriched with beneficial phytochemicals, especially phenolic compounds, which are not fully elucidated. Therefore, this study aimed to analyze native Australian mountain-pepper berries (Tasmannia lanceolata), rosella (Hibiscus sabdariffa), lemon aspen (Acronychia acidula), and strawberry gum (Eucalyptus olida) for phenolic and non-phenolic metabolites and their antioxidant and alpha-glucosidase inhibition activities. Liquid chromatography-mass spectrometry-electrospray ionization coupled with quadrupole time of flight (LC-ESI-QTOF-MS/MS) was applied to elucidate the composition, identities, and quantities of bioactive phenolic metabolites in Australian native commercial fruits and spices. This study identified 143 phenolic compounds, including 31 phenolic acids, 70 flavonoids, 10 isoflavonoids, 7 tannins, 3 stilbenes, 7 lignans, 10 other compounds, and 5 limonoids. Strawberry gum was found to have the highest total phenolic content (TPC-36.57 ± 1.34 milligram gallic acid equivalent per gram (mg GAE/g), whereas lemon aspen contained the least TPC (4.40 ± 0.38 mg GAE/g). Moreover, strawberry gum and mountain pepper berries were found to have the highest antioxidant and anti-diabetic potential. In silico molecular docking and pharmacokinetics screening were also conducted to predict the potential of the most abundant phenolic compounds in these selected plants. A positive correlation was observed between phenolic contents and biological activities. This study will encourage further research to identify the nutraceutical and phytopharmaceutical potential of these native Australian fruits.
Collapse
|
7
|
Zahid HF, Ali A, Ranadheera CS, Fang Z, Ajlouni S. Identification of Phenolics Profile in Freeze-Dried Apple Peel and Their Bioactivities during In Vitro Digestion and Colonic Fermentation. Int J Mol Sci 2023; 24:ijms24021514. [PMID: 36675061 PMCID: PMC9864335 DOI: 10.3390/ijms24021514] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Freeze-dried apple peel powder (Fd-APP) was subjected to in vitro digestion and colonic fermentation to evaluate the variations in its phenolic composition, bioactivities (antioxidant activity, α-amylase, and α-glucosidase inhibition), and fecal metabolic outputs. A total of 88 phenolics were tentatively identified, of which 51 phenolic compounds were quantitated in Fd-APP sample extracts before digestion, and 34 were released during subsequent phases of digestion. Among these, phenolic acids showed the highest bio accessibility index (BI) of 68%, followed by flavonoids (63%) and anthocyanins (52%). The inhibitory functions of Fd-APP extract against α-amylase and α-glucosidase pre- and post-digestion were moderate and ranged from 41.88 to 44.08% and 35.23 to 41.13%, respectively. Additionally, the antioxidant activities revealed a significant (p ≤ 0.05) decline during the in vitro digestion. However, the colonic fermentation stage presented different products where the intact parent phenolic compounds present in Fd-APP were utilized by gut microbes and produced various phenolic metabolites such as 3- hydroxyphenyl acetic acid (3-HPAA), ferulic acid (FA), 3-(4-hydroxyphenyl) propionic acid (3,4 HPPA) and 4- hydroxybenzoic acid (4-HBA). Furthermore, colonic fermentation of Fd-APP accelerated the production of short-chain fatty acids (SCFAs), with acetic acid being the most prevalent (97.53 ± 9.09 mM). The decrease in pH of fermentation media to 4.3 significantly (p ≤ 0.05) enhanced counts of Bifidobacterium (10.27 log CFU/mL), which demonstrated the potential prebiotic effects of Fd-APP. These findings indicated that the consumption of apple peel as a constituent of novel functional foods may support and protect the intestinal microbiota and consequently promote human health.
Collapse
|
8
|
Angeloni C, Malaguti M, Prata C, Freschi M, Barbalace MC, Hrelia S. Mechanisms Underlying Neurodegenerative Disorders and Potential Neuroprotective Activity of Agrifood By-Products. Antioxidants (Basel) 2022; 12:94. [PMID: 36670956 PMCID: PMC9854890 DOI: 10.3390/antiox12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Neurodegenerative diseases, characterized by progressive loss in selected areas of the nervous system, are becoming increasingly prevalent worldwide due to an aging population. Despite their diverse clinical manifestations, neurodegenerative diseases are multifactorial disorders with standard features and mechanisms such as abnormal protein aggregation, mitochondrial dysfunction, oxidative stress and inflammation. As there are no effective treatments to counteract neurodegenerative diseases, increasing interest has been directed to the potential neuroprotective activities of plant-derived compounds found abundantly in food and in agrifood by-products. Food waste has an extremely negative impact on the environment, and recycling is needed to promote their disposal and overcome this problem. Many studies have been carried out to develop green and effective strategies to extract bioactive compounds from food by-products, such as peel, leaves, seeds, bran, kernel, pomace, and oil cake, and to investigate their biological activity. In this review, we focused on the potential neuroprotective activity of agrifood wastes obtained by common products widely produced and consumed in Italy, such as grapes, coffee, tomatoes, olives, chestnuts, onions, apples, and pomegranates.
Collapse
Affiliation(s)
- Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum–University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy
| |
Collapse
|
9
|
Ali A, Kiloni SM, Cáceres-Vélez PR, Jusuf PR, Cottrell JJ, Dunshea FR. Phytochemicals, Antioxidant Activities, and Toxicological Screening of Native Australian Fruits Using Zebrafish Embryonic Model. Foods 2022; 11:foods11244038. [PMID: 36553779 PMCID: PMC9777714 DOI: 10.3390/foods11244038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals play a pivotal role in human health and drug discovery. The safety evaluation of plant extracts is a prerequisite to ensure that all phytochemicals are safe before translational development and human exposure. As phytochemicals are natural, they are generally considered safe, although this is not always true. The objective of this study was to investigate and compare the phytochemical composition, antioxidant potential, and safety evaluation of native Australian Muntries (Kunzea pomifera), Kakadu plum (Terminalia ferdinandiana), Davidson plum (Davidsonia) and Quandong peach (Santalum acuminatum) through the in vivo vertebrate zebrafish embryonic model. The highest total phenolic content (TPC; 793.89 ± 22.27 μg GAE/mg) was quantified in Kakadu plum, while the lowest TPC (614.44 ± 31.80 μg GAE/mg) was quantified in Muntries. Developmental alterations, mortality, and morbidity were assessed for toxicological screening of these selected native Australian fruit extracts. In this study, muntries were quantified as having the least LC50 value (169 mg/L) compared to Davidson plum (376 mg/L), Kakadu plum (>480 mg/L), and Quandong peach (>480 mg/L), which indicates that muntries extract was more toxic than other fruit extracts. Importantly, we found that adverse effects were not correlated to the total phenolic content and antioxidant potential of these native Australian fruits and cannot simply be predicted from the in vitro analysis. Conclusively, these selected native Australian fruit extracts are categorized as safe. This study could explore the use of these native Australian fruits in cosmetics, pharmaceuticals, and drug discovery.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sarah M. Kiloni
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Patricia R. Jusuf
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
- Correspondence:
| |
Collapse
|
10
|
Zahid HF, Ali A, Ranadheera CS, Fang Z, Dunshea FR, Ajlouni S. In vitro bioaccessibility of phenolic compounds and alpha-glucosidase inhibition activity in yoghurts enriched with mango peel powder. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Ali A, Cottrell JJ, Dunshea FR. LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants. Metabolites 2022; 12:1016. [PMID: 36355099 PMCID: PMC9698446 DOI: 10.3390/metabo12111016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 09/29/2023] Open
Abstract
Polyphenols are considered vital bioactive compounds beneficial for human health. The Australian flora is enriched with polyphenols which are not fully characterized yet. Thus, the main objective of this study was to identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, and old man saltbush for phenolic compounds and their antioxidant activities. In this study, we tentatively identified a total of 155 phenolic compounds including 25 phenolic acids, 55 flavonoids, 22 isoflavonoids, 22 tannins, 22 lignans, 33 stilbenes, 33 coumarins and derivatives, 12 tyrosols and derivatives, and 6 phenolic terpenes. The highest total phenolic content (TPC) (15.09 ± 0.88 mg GAE/g) was quantified in lemongrass, while the lowest TPC (4.17 ± 0.33 mg GAE/g) was measured in wattle seeds. The highest total flavonoid content (TFC) and total condensed tannins (TCT) were measured in lemongrass and wattle seeds, respectively. A total of 18 phenolic metabolites were quantified/semi-quantified in this experiment. Lemongrass contains a vast number of phenolic metabolites.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- The Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
12
|
Functional and Healthy Yogurts Fortified with Probiotics and Fruit Peel Powders. FERMENTATION 2022. [DOI: 10.3390/fermentation8090469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The application of processing waste by-products along with probiotics is an interesting choice to confer potential functional aspects to food products. This study was designed to investigate the nutritional capacity of freeze-dried mango peel powder (MPP) and banana peel powder (BPP) in the presence of a mixture of three probiotic species (1% of each of three probiotics (Lacticaseibacillus casei (431®), Lacticaseibacillus rhamnosus (LGG®) and Bifidobacterium subsp. Lactis (Bb-12®)) as sources of additional nutrients and prebiotics in fresh and rehydrated freeze-dried (RFD) yogurts for 28 days of refrigerated storage. The net count of probiotics in yogurt fortified with MPP and BPP increased by at least 1 log CFU/g after 4 weeks of refrigerated storage. Adding fruit peel powder (FPP) significantly (p < 0.05) increased fat, ash, and protein contents in both fresh and RFD yogurts in comparison with the control yogurt. Similarly, the total phenolic contents (TPC) and antioxidant activity (AOA) was enhanced significantly (p < 0.05). The TPC reached 2.27 ± 0.18 and 2.73 ± 0.11 mg GAE/g in RFD enriched with BPP and MPP compared to a TPC of 0.31 ± 0.07 mg GAE/g in the control. Additionally, yogurt samples enriched with BPP (Y-5) and MPP (Y-6) demonstrated 12% more sugar contents than non-fortified yogurts (Y-1). Higher titratable acidity and lower pH values were also recorded in the RFD yogurt. Significant differences (p < 0.05) in the color parameters were detected in both fresh and RFD yogurts with reduced brightness (L*) and increased redness (a*) of the product. These findings demonstrated the suitability of MPP and BPP in yogurt formulations to optimize the advantages of such synbiotic products with higher availability of phenolic compounds.
Collapse
|
13
|
Identification and characterization of anthocyanins and non-anthocyanin phenolics from Australian native fruits and their antioxidant, antidiabetic, and anti-Alzheimer potential. Food Res Int 2022; 162:111951. [DOI: 10.1016/j.foodres.2022.111951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022]
|