1
|
Simha N A, Patil SM, M K J, N C, Wong LS, Kijsomporn J, Raj R, Ramu R. From sugar binders to diabetes fighters: the lectin saga of antihyperglycemic activity through systematic review and meta-analysis. Front Pharmacol 2024; 15:1382876. [PMID: 39323638 PMCID: PMC11422237 DOI: 10.3389/fphar.2024.1382876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Introduction Lectins are carbohydrate-binding proteins that are extremely selective for sugar groups in the other molecules. As a result, they perform a variety of roles in biological processes involving cell, carbohydrate, and protein recognition at the cellular and molecular levels. Because lectins can bind to carbohydrates, they may play a role in determining the rate of carbohydrate digestion. They also bind to some proteins involved in diabetes mellitus (DM) pathophysiology. The present review aims to summarize the efficiency of lectins from different sources as potential antihyperglycemic agents. Methods The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were employed for the drafting. In this regard, published scientific articles on the effects of different lectins on blood glucose (BG), glucose tolerance, hormonal effects, carbohydrate-digesting enzymes, oxidative stress, and insulin production process were collected from reputed journals using electronic databases. Furthermore, the toxicity effects of lectins from different sources were collected. A specific keyword search was completed to collect numerous articles with unique experimental designs and significant results. This was followed by the selection of the requisite articles based on the criteria designed by the authors. Data extraction was based on the common research elements included in the articles. Results and Discussion Of 13 identified studies, 11 studies were considered after double screening based on the inclusion criteria. All 11 pharmacological investigations were considered for review. Subsequent studies reflected on the pharmacological properties of lectins on the levels of BG, oxidative stress, β-cell proliferation, insulin resistance, inhibition of carbohydrate digesting enzymes, body weight, food and water intake, lipid profile, and other parameters. This review highlights lectins as potential anti-diabetic agents. Conclusion However, due to limited research, systematic evaluation is recommended for their development and promotion as effective potential antihyperglycemic agents. The clinical efficacy and safety of lectins against diabetes mellitus must also be evaluated.
Collapse
Affiliation(s)
- Akshaya Simha N
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jayanthi M K
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chaitra N
- Division of Medical Statistics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Ranjith Raj
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
2
|
Samudra AG, Nugroho AE, Murwanti R. Review of the pharmacological properties of marine macroalgae used in the treatment of diabetes mellitus in Indonesia. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:597-617. [PMID: 38354976 DOI: 10.1016/j.pharma.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Indonesia is the largest archipelagic country in the world, with 70% of its territory covered by oceans that are rich in various types of biological resources. Indonesia's biodiversity has made it possible to develop natural medicine. Marine algae have enormous potential, but the types of marine algae used still need to be more varied. Research on the pharmacology of marine macroalgae has been conducted in Indonesia, but studies on such topic related to diabetes mellitus (DM) still need to be completed. This study provides a comprehensive dataset of pharmacological anti-diabetic potential of marine macroalgae used for managing DM and reports on preclinical trials that provide pharmacological evidence. Data on the Indonesian marine macroalgae used to lower blood glucose were obtained from online sources. The bioactive chemicals of marine macroalgae have been found efficient at blocking several diabetes enzymes in in-vivo and in-vitro studies, and such chemicals have anti-inflammatory, anti-obesity, antioxidant, and other therapeutic benefits. The Google Scholar was used to search for the pharmacological literature with the keywords marine AND macroalgae AND diabetes AND Indonesia. Pharmacological research on the anti-diabetic activity of marine macroalgae has been carried out on five major Indonesian islands, including Sumatra, Kalimantan, Java, Sulawesi, and Papua, which encompassed 12 provinces: Southwest Papua, South Sulawesi, West Kalimantan, Riau Archipelago, Banten, West Java, North Sulawesi, East Java, Yogyakarta, Maluku, Jakarta, and Bengkulu. Articles on preclinical tests (in vitro and in vivo) were also used for the phytochemical problem section. The results briefly describe which class of algae has been widely used in Indonesia as an anti-diabetic. The findings of this research can be utilized to help find DM treatment drugs based on natural resources from marine macroalgae.
Collapse
Affiliation(s)
- Agung Giri Samudra
- Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Bengkulu University, 38371 Bengkulu, Indonesia
| | - Agung Endro Nugroho
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia.
| | - Retno Murwanti
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia; Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, 55281 Yogyakarta, Indonesia
| |
Collapse
|
3
|
Alade AA, Ahmed SA, Mujwar S, Kikiowo B, Akinnusi PA, Olubode SO, Olufemi OM, Ohilebo AA. Identification of levomenthol derivatives as potential dipeptidyl peptidase-4 inhibitors: a comparative study with gliptins. J Biomol Struct Dyn 2024; 42:4029-4047. [PMID: 37261796 DOI: 10.1080/07391102.2023.2217927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Dipeptidyl peptidase-4 (DPP4) inhibitors are a potent therapeutic treatment for type 2 diabetes mellitus (T2DM). There is a family of compounds used as DPP4 inhibitors (DPP4Is) called gliptins. They bind tightly to DPP4 to form an inactive protein-ligand complex. However, there remains a need to identify novel DPP4Is that are more efficacious and safer due to the increasing prevalence of T2DM and the undesirable side effects of gliptins. To identify potential DPP4Is, we screened over 1800 novel compounds in a comparative study with gliptins. We performed dual-factor molecular docking to assess the binding affinity of the compounds to DPP4 and found four compounds with a higher binding affinity to DPP4 than currently used gliptins. The newly identified compounds interacted with the dyad glutamate (GLU205 and GLU206) and tyrosine (TYR662 and TYR666) residues in DPP4's active site. We performed molecular dynamics simulations to determine the stability of the protein-ligand complexes formed by the compounds and DPP4. Furthermore, we examined the toxicity and pharmacological profile of the compounds. The compounds are drug-like, easy to synthesize, and relatively less toxic than gliptins. Collectively, our results suggest that the novel compounds are potential DPP4Is and should be considered for further studies to develop novel antidiabetics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adebowale A Alade
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | - Samad A Ahmed
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Punjab, Rajpura, India
| | | | | | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | | | - Abass A Ohilebo
- Department of Biochemistry, Faculty of Life Sciences, Ambrose Ali University Ekpoma, Edo, Nigeria
| |
Collapse
|
4
|
Pu L, Kong X, Xing R, Wang Y, Zhang C, Hua Y, Chen Y, Li X. Identification, rapid screening, docking mechanism and in vitro digestion stability of novel DPP-4 inhibitory peptides from wheat gluten with ginger protease. Food Funct 2024; 15:3848-3863. [PMID: 38512162 DOI: 10.1039/d3fo05423c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
To better understand the hypoglycemic potential of wheat gluten (WG), we screened dipeptidyl peptidase IV (DPP-4) inhibitory active peptides from WG hydrolysates. WG hydrolysates prepared by ginger protease were found to have the highest DPP-4 inhibitory activity among the five enzymatic hydrolysates, from which a 1-3 kDa fraction was isolated by ultrafiltration. Further characterization of the fraction with nano-HPLC-MS/MS revealed 1133 peptides. Among them, peptides with P'2 (the second position of the N-terminal) and P2 (the second position of the C-terminal) as proline residues (Pro) accounted for 12.44% and 43.69%, respectively. The peptides including Pro-Pro-Phe-Ser (PPFS), Ala-Pro-Phe-Gly-Leu (APFGL), and Pro-Pro-Phe-Trp (PPFW) exhibited the most potent DPP-4 inhibitory activity with IC50 values of 56.63, 79.45, and 199.82 μM, respectively. The high inhibitory activity of PPFS, APFGL, and PPFW could be mainly attributed to their interaction with the S2 pocket (Glu205 and Glu206) and the catalytic triad (Ser630 and His740) of DPP-4, which adopted competitive, mixed, and mixed inhibitory modes, respectively. After comparative analysis of PPFS, PPFW, and PPF, Ser was found to be more conducive to enhancing the DPP-4 inhibitory activity. Interestingly, peptides with P2 as Pro also exhibited good DPP-4 inhibitory activity. Meanwhile, DPP-4 inhibitory peptides from WG showed excellent stability, suggesting a potential application in type 2 diabetes (T2DM) therapy or in the food industry as functional components.
Collapse
Affiliation(s)
- Linsong Pu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xiangzhen Kong
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Ruoyu Xing
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yuqing Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Caimeng Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yufei Hua
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Yeming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Xingfei Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
5
|
Hossain A, Rahman ME, Faruqe MO, Saif A, Suhi S, Zaman R, Hirad AH, Matin MN, Rabbee MF, Baek KH. Characterization of Plant-Derived Natural Inhibitors of Dipeptidyl Peptidase-4 as Potential Antidiabetic Agents: A Computational Study. Pharmaceutics 2024; 16:483. [PMID: 38675143 PMCID: PMC11053753 DOI: 10.3390/pharmaceutics16040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetes, characterized by elevated blood sugar levels, poses significant health and economic risks, correlating with complications like cardiovascular disease, kidney failure, and blindness. Dipeptidyl peptidase-4 (DPP-4), also referred to as T-cell activation antigen CD26 (EC 3.4.14.5.), plays a crucial role in glucose metabolism and immune function. Inhibiting DPP-4 was anticipated as a potential new therapy for diabetes. Therefore, identification of plant-based natural inhibitors of DPP-4 would help in eradicating diabetes worldwide. Here, for the identification of the potential natural inhibitors of DPP-4, we developed a phytochemicals library consisting of over 6000 phytochemicals detected in 81 medicinal plants that exhibited anti-diabetic potency. The library has been docked against the target proteins, where isorhamnetin, Benzyl 5-Amino-5-deoxy-2,3-O-isopropyl-alpha-D-mannofuranoside (DTXSID90724586), and 5-Oxo-7-[4-(trifluoromethyl) phenyl]-4H,6H,7H-[1,2]thiazolo[4,5-b]pyridine 3-carboxylic acid (CHEMBL3446108) showed binding affinities of -8.5, -8.3, and -8.3 kcal/mol, respectively. These compounds exhibiting strong interactions with DPP-4 active sites (Glu205, Glu206, Tyr547, Trp629, Ser630, Tyr662, His740) were identified. ADME/T and bioactivity predictions affirmed their pharmacological safety. Density functional theory calculations assessed stability and reactivity, while molecular dynamics simulations demonstrated persistent stability. Analyzing parameters like RMSD, RG, RMSF, SASA, H-bonds, MM-PBSA, and FEL confirmed stable protein-ligand compound formation. Principal component analysis provided structural variation insights. Our findings suggest that those compounds might be possible candidates for developing novel inhibitors targeting DPP-4 for treating diabetes.
Collapse
Affiliation(s)
- Alomgir Hossain
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Md Ekhtiar Rahman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Md Omar Faruqe
- Department of Computer Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Ahmed Saif
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Suzzada Suhi
- Department of Zoology, University of Rajshahi, Rajshahi 6205, Bangladesh;
| | - Rashed Zaman
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohammad Nurul Matin
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh; (A.H.); (M.E.R.); (R.Z.); (M.N.M.)
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
6
|
Ahmed SS, Rahman MO. From Flora to Pharmaceuticals: 100 new additions to angiosperms of Gafargaon subdistrict in Bangladesh and unraveling antidiabetic drug candidates targeting DPP4 through in silico approach. PLoS One 2024; 19:e0301348. [PMID: 38551991 PMCID: PMC10980240 DOI: 10.1371/journal.pone.0301348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Addition to the angiosperm flora provides essential insights into the biodiversity of a region, contributing to ecological understanding and conservation planning. Gafargaon subdistrict under Mymensingh district in Bangladesh represents a diverse population of angiosperms with a multifaceted ecosystem that demands re-evaluation of the existing angiosperm diversity of Gafargaon to update the status of angiosperm taxa and facilitate their conservation efforts. With this endeavor, a total of 100 angiosperm taxa belonging to 90 genera and 46 families were uncovered as additional occurrence in Gafargaon. The species in the area showcased a variety of life forms, including 63 herbs, 14 shrubs, 14 trees, and 9 climbers. Among the recorded taxa, Chamaecostus cuspidatus (Nees & Mart.) C.D. Specht & D.W. Stev. was selected for antidiabetic drug design endeavor based on citation frequency and ethnomedicinal evidence. A total of 41 phytochemicals of C. cuspidatus were screened virtually, targeting the Dipeptidyl peptidase 4 protein through structure-based drug design approach, which unveiled two lead compounds, such as Tigogenin (-9.0 kcal/mol) and Diosgenin (-8.5 kcal/mol). The lead candidates demonstrated favorable pharmacokinetic and pharmacodynamic properties with no major side effects. Molecular dynamics simulation revealed notable stability and structural compactness of the lead compounds. Principal component analysis and Gibbs free energy landscape further supported the results of molecular dynamics simulation. Molecular mechanics-based MM/GBSA approach unraveled higher free binding energies of Diosgenin (-47.36 kcal/mol) and Tigogenin (-46.70 kcal/mol) over Alogliptin (-46.32 kcal/mol). The outcome of the present investigation would enrich angiosperm flora of Gafargaon and shed light on the role of C. cuspidatus to develop novel antidiabetic therapeutics to combat diabetes.
Collapse
Affiliation(s)
- Sheikh Sunzid Ahmed
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - M. Oliur Rahman
- Department of Botany, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
7
|
Chau TP, Devanesan S, Ayub R, Perumal K. Identification and characterization of major bioactive compounds from Andrographis paniculata (Burm. f.) extracts showed multi-biomedical applications. ENVIRONMENTAL RESEARCH 2024; 242:117763. [PMID: 38029828 DOI: 10.1016/j.envres.2023.117763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The Andrographis paniculata recognized as most valuable medicinal plant in folk medicine. Hence, this research was designed to evaluate antibacterial potential of petroleum ether (PE) and methanol (ME) extracts of A. paniculata against skin infection causing bacterial pathogens such as Staphylococcus aureus, Streptococcus pyogenes, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris, and Propionibacterium acnes. Also assessed the antidiabetic (α-glucosidase and α-amylase inhibition assay), antioxidant, and photoprotective potential of PE and ME extract analyses. The major bioactive compounds were identified and characterized through UV, FTIR, 1H-NMR and 13C-NMR spectra analyses. The ME extract contain more number of phytochemicals (alkaloids, flavonoids, saponins, terpenoids, glycoside, protein, and phytosterol) than PE extract. The antibacterial activity result also revealed that the ME (as dose dependent) extract showed better activity at 250 mg mL-1 as in the following order: P. acnes (6-29 mm) > K. pneumoniae (3-28 mm) > S. aureus (3-27 mm) > P. vulgaris (3-26 mm) > S. pyogenes (2-25 mm) > E. aerogenes (1-23 mm). PE: E. aerogenes (3-20 mm) > P. vulgaris (2-19 mm) > P. acnes (3-18 mm) > K. pneumoniae (3-17 mm) > S. aureus (2-16 mm) > S. pyogenes (0-11 mm). The MIC value of ME extract was found as 100-150 mg mL-1 and it was better than PE extract. Similarly, the ME also possesses dose based α-glucosidase inhibition activity as up to 85% at 250 mg mL-1 concentration. The fluorescence spectra analysis method also stated that the ME extract possess photoprotective bioactive agent. The ME fractions (F01 and F02) obtained from TLC and column chromatogram were identified as 3-O-β-d-glucosyl-14- deoxyandrographiside and 14-deoxyandrographolide respectively through UV, FTIR, 1H-NMR and 13C-NMR spectra analyses. Such compounds may be responsible for significant antibacterial activity against pathogenic bacteria causing skin infections, excellent antidiabetic activity, as well as photoprotective potential.
Collapse
Affiliation(s)
- Tan Phat Chau
- Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Rashid Ayub
- Department of Science and Technology, King Saud University, P.O. Box-2454, Riyadh, 11451, Saudi Arabia
| | - Karthikeyan Perumal
- Department of Chemistry and Biochemistry, The Ohio State University, 151 W. Woodruff Ave, Columbus, OH, 43210, USA
| |
Collapse
|
8
|
Parasher M, Pandey DK, Manhas RK. Traditionally used anti-diabetic plants in Kathua district of Union Territory of Jammu and Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117087. [PMID: 37683931 DOI: 10.1016/j.jep.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Madhvi Parasher
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Department of Botany, Govt. Degree College, Marh, 181206, Jammu, JKUT, India.
| | - Devendra Kumar Pandey
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - R K Manhas
- Department of Botany, Govt. Degree College, Basohli, 184201, JKUT, India.
| |
Collapse
|
9
|
Roney M, Dubey A, Issahaku AR, Uddin MN, Tufail A, Wilhelm A, Zamri NB, Aluwi MFFM. Insights from in silico exploration of major curcumin analogs targeting human dipeptidyl peptidase IV. J Biomol Struct Dyn 2024:1-14. [PMID: 38260948 DOI: 10.1080/07391102.2024.2306197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The goal of this work is to use a variety of in-silico techniques to identify anti-diabetic agents against DPP-IV enzyme from five main curcumin analogues. To produce the successful molecules, five main curcumin analogues were docked into the active site of DPP-IV enzyme. In comparison to the control molecule (Saxagliptin, -6.9 kcal/mol), all the compounds have the highest binding affinity (-7.6 to -7.7 kcal/mol) for the DPP-IV enzyme. These compounds underwent further testing for studies on drug-likeness, pharmacokinetics, and acute toxicity to see the efficacy and safety of compounds. To assess the stability of the docking complex and the binding posture identified during the docking experiment, our study got THC as the lead compound, which was then exposed to 200 ns of molecular dynamic simulation and PCA analysis. Additionally, DFT calculations were conducted to determine the thermodynamic, molecular orbital, and electrostatic potential characteristics of lead compound. Overall, the lead chemical has shown strong drug-like properties, is non-toxic, and has a sizable affinity for the DPP-IV enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | | | - Md Nazim Uddin
- Institute of Food Science and Technology, Bangladesh Council of Scientific and Industrial Research, Dhaka, Bangladesh
| | - Aisha Tufail
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
| | - Anke Wilhelm
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Normaiza Binti Zamri
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
- Bio Aromatic Research Centre, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| |
Collapse
|
10
|
Sivaraman SA, Sabareesh V. An Update on Dipeptidyl Peptidase-IV Inhibiting Peptides. Curr Protein Pept Sci 2024; 25:267-285. [PMID: 38173201 DOI: 10.2174/0113892037287976231212104607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024]
Abstract
Diabetes is a chronic metabolic disorder. According to the International Diabetes Federation, about 537 million people are living with diabetes. The two types of diabetes are type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), among which the population affected by T2DM is relatively higher. A major reason for T2DM is that insulin stimulation is hampered due to the inactivation of incretin hormones. Dipeptidyl peptidase-IV (DPP-IV) is a serine protease that is directly involved in the inactivation of incretin hormones, e.g., glucagon-like peptide-1 (GLP-1). Therefore, the inhibition of DPP-IV can be a promising method for managing T2DM, in addition to other enzyme inhibition strategies, such as inhibition of α-amylase and α -glucosidase. Currently, about 12 different gliptin drugs are available in the market that inhibit DPP-IV in a dose-dependent manner. Instead of gliptins, 'peptides' can also be employed as an alternative and promising way to inhibit DPP-IV. Peptide inhibitors of DPP-IV have been identified from various plants and animals. Chemically synthesized peptides have also been experimented for inhibiting DPP-IV. Most peptides have been analysed by biochemical assays, whereas some in vitro assays have also been reported. Molecular docking analysis has been applied to comprehend the mechanism of inhibition. In this review, certain aspects of natural as well as synthetic peptides are described that have been proven to inhibit DPP-IV.
Collapse
Affiliation(s)
- Sachithanantham Annapoorani Sivaraman
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
- School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| | - Varatharajan Sabareesh
- Centre for Bio-Separation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
11
|
Pradeep S, Patil SM, Dharmashekara C, Jain A, Ramu R, Shirahatti PS, Mandal SP, Reddy P, Srinivasa C, Patil SS, Ortega-Castro J, Frau J, Flores-Holgúın N, Shivamallu C, Kollur SP, Glossman-Mitnik D. Molecular insights into the in silico discovery of corilagin from Terminalia chebula as a potential dual inhibitor of SARS-CoV-2 structural proteins. J Biomol Struct Dyn 2023; 41:10869-10884. [PMID: 36576118 DOI: 10.1080/07391102.2022.2158943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 12/10/2022] [Indexed: 12/29/2022]
Abstract
The spike (S) glycoprotein and nucleocapsid (N) proteins are the crucial pathogenic proteins of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) virus during its interaction with the host. Even FDA-approved drugs like dexamethasone and grazoprevir are not able to curb the viral progression inside the host and are reported with adverse effects on body metabolism. In this context, we aim to report corilagin a novel, potential dual inhibitor of S and N proteins from Terminalia chebula. The bioactive compounds of T. chebula were subjected to a series of computational investigations including molecular docking simulations, molecular dynamics (MD) simulations, binding free energy calculations, and PASS pharmacological analysis. The results obtained from these studies revealed that corilagin was highly interactive with the S (-8.9 kcal/mol) and N (-9.2 kcal/mol) proteins, thereby showing dual inhibition activity. It was also found to be stable enough to induce biological activity inside the inhibitor binding pocket of the target enzymes throughout the dynamics simulation run for 100 ns. This is also confirmed by the changes in the protein conformations, evaluated using free energy landscapes. Outcomes from this investigation identify corilagin as the lead potential dual inhibitor of S and N proteins of SARS-CoV-2, which could be taken for biological studies in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sushma Pradeep
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Chandan Dharmashekara
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Anisha Jain
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | | | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Pruthvish Reddy
- Department of Biotechnology, Acharya Institute of Technology, Bengaluru, Karnataka, India
| | - Chandrashekar Srinivasa
- Department of Studies in Biotechnology, Davangere University, Shivagangotri, Karnataka, India
| | - Sharanagouda S Patil
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Bengaluru, Karnataka, India
| | | | - Juan Frau
- Departament de Qúımica, Universitat de les Illes Balears, Palma de Malllorca, Spain
| | - Norma Flores-Holgúın
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education & Research, Mysuru, Karnataka, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, India
| | - Daniel Glossman-Mitnik
- Laboratorio Virtual NANOCOSMOS, Departamento de Medio Ambiente y Energ'ıa, Centro de Investigación en Materiales Avanzados, Chihuahua, Chih, México
| |
Collapse
|
12
|
Kokila NR, Mahesh B, Ramu R, Mruthunjaya K, Bettadaiah BK, Madhyastha H. Inhibitory effect of gallic acid from Thunbergia mysorensis against α-glucosidase, α-amylase, aldose reductase and their interaction: Inhibition kinetics and molecular simulations. J Biomol Struct Dyn 2023; 41:10642-10658. [PMID: 36533383 DOI: 10.1080/07391102.2022.2156923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
In this exploration, we assessed the antihyperglycaemic properties of methanol extract of flowers of Thunbergia mysorensis (MeT) against α-glucosidase, α-amylase and aldose reductase enzymes for the effective management of postprandial hyperglycemia. Hyperglycemia occurs when the body lacks enough insulin or is unable to correctly utilize it. MeT inhibited both the carbohydrate digestive enzymes (α-glucosidase and α-amylase) and aldose reductase, which are vital for the therapeutic control of postprandial hyperglycaemia. MeT was also found to have significant antioxidant activity. Using several spectroscopic approaches, the primary active component found in MeT was identified as gallic acid. With low Ki values, gallic acid significantly inhibited α-glucosidase (30.86 µg/mL) and α-amylase (6.50 µg/mL). Also, MeT and gallic acid both inhibited aldose reductase effectively, corresponding to an IC50 value of 3.31 and 3.05 µg/mL. Our findings imply that the presence of polyphenol compounds (identified via HPLC analysis) is more likely to be responsible for the antihyperglycaemic role exhibited by MeT via the inhibition of α-glucosidase and the polyol pathway. Further, gallic acid interacted with the key residues of the active sites of α-glucosidase (-6.4 kcal/mol), α-amylase (-5.8 kcal/mol) and aldose reductase (-5.8 kcal/mol) as observed in the protein-ligand docking. It was also predicted that gallic acid was stable inside the binding pockets of the target enzymes during molecular dynamics simulation. Overall, gallic acid derived from MeT via bioassay-guided isolation emerges as a natural antidiabetic drug and can be taken into in vivo and clinical studies shortly.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Kokila
- Department of Chemistry, JSS Academy of Technical Education,(Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, India
| | - B Mahesh
- Department of Chemistry, JSS Academy of Technical Education,(Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - K Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - B K Bettadaiah
- Spices and Flavour Science Department, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
13
|
Al-Ghorbani M, Alharbi O, Al-Odayni AB, Abduh NAY. Quinoline- and Isoindoline-Integrated Polycyclic Compounds as Antioxidant, and Antidiabetic Agents Targeting the Dual Inhibition of α-Glycosidase and α-Amylase Enzymes. Pharmaceuticals (Basel) 2023; 16:1222. [PMID: 37765030 PMCID: PMC10535292 DOI: 10.3390/ph16091222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Novel analogs of quinoline and isoindoline containing various heterocycles, such as tetrazole, triazole, pyrazole, and pyridine, were synthesized and characterized using FT-IR, NMR, and mass spectroscopy, and their antioxidant and antidiabetic activities were investigated. The previously synthesized compound 1 was utilized in conjugation with ketone-bearing tetrazole and isoindoline-1,3-dione to synthesize Schiff's bases 2 and 3. Furthermore, hydrazide 1 was treated with aryledines to provide pyrazoles 4a-c. Compound 5 was obtained by treating 1 with potassium thiocyanate, which was then cyclized in a basic solution to afford triazole 6. On the other hand, pyridine derivatives 7a-d and 8a-d were synthesized using 2-(4-acetylphenyl)isoindoline-1,3-dione via a one-pot condensation reaction with aryl aldehydes and active methylene compounds. From the antioxidant and antidiabetic studies, compound 7d showed significant antioxidant activity with an EC50 = 0.65, 0.52, and 0.93 mM in the free radical scavenging assays (DPPH, ABTS, and superoxide anion radicals). It also displayed noteworthy inhibitory activity against both enzymes α-glycosidase (IC50: 0.07 mM) and α-amylase (0.21 mM) compared to acarbose (0.09 mM α-glycosidase and 0.25 mM for α-amylase), and higher than in the other compounds. During in silico assays, compound 7d exhibited favorable binding affinities towards both α-glycosidase (-10.9 kcal/mol) and α-amylase (-9.0 kcal/mol) compared to acarbose (-8.6 kcal/mol for α-glycosidase and -6.0 kcal/mol for α-amylase). The stability of 7d was demonstrated by molecular dynamics simulations and estimations of the binding free energy throughout the simulation session (100 ns).
Collapse
Affiliation(s)
- Mohammed Al-Ghorbani
- Department of Chemistry, College of Science and Arts, Ulla, Taibah University, Madinah 41477, Saudi Arabia;
| | - Osama Alharbi
- Department of Chemistry, College of Science and Arts, Ulla, Taibah University, Madinah 41477, Saudi Arabia;
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Science, College of Dentistry, King Saud University, P.O. Box 60169, Riyadh 11545, Saudi Arabia;
| | - Naaser A. Y. Abduh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
14
|
Sreepathi N, Kumari VBC, Huligere SS, Al-Odayni AB, Lasehinde V, Jayanthi MK, Ramu R. Screening for potential novel probiotic Levilactobacillus brevis RAMULAB52 with antihyperglycemic property from fermented Carica papaya L. Front Microbiol 2023; 14:1168102. [PMID: 37408641 PMCID: PMC10318367 DOI: 10.3389/fmicb.2023.1168102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Probiotics are live microorganisms with various health benefits when consumed in appropriate amounts. Fermented foods are a rich source of these beneficial organisms. This study aimed to investigate the probiotic potential of lactic acid bacteria (LAB) isolated from fermented papaya (Carica papaya L.) through in vitro methods. The LAB strains were thoroughly characterized, considering their morphological, physiological, fermentative, biochemical, and molecular properties. The LAB strain's adherence and resistance to gastrointestinal conditions, as well as its antibacterial and antioxidant capabilities, were examined. Moreover, the strains were tested for susceptibility against specific antibiotics, and safety evaluations encompassed the hemolytic assay and DNase activity. The supernatant of the LAB isolate underwent organic acid profiling (LCMS). The primary objective of this study was to assess the inhibitory activity of α-amylase and α-glucosidase enzymes, both in vitro and in silico. Gram-positive strains that were catalase-negative and carbohydrate fermenting were selected for further analysis. The LAB isolate exhibited resistance to acid bile (0.3% and 1%), phenol (0.1% and 0.4%), and simulated gastrointestinal juice (pH 3-8). It demonstrated potent antibacterial and antioxidant abilities and resistance to kanamycin, vancomycin, and methicillin. The LAB strain showed autoaggregation (83%) and adhesion to chicken crop epithelial cells, buccal epithelial cells, and HT-29 cells. Safety assessments indicated no evidence of hemolysis or DNA degradation, confirming the safety of the LAB isolates. The isolate's identity was confirmed using the 16S rRNA sequence. The LAB strain Levilactobacillus brevis RAMULAB52, derived from fermented papaya, exhibited promising probiotic properties. Moreover, the isolate demonstrated significant inhibition of α-amylase (86.97%) and α-glucosidase (75.87%) enzymes. In silico studies uncovered that hydroxycitric acid, one of the organic acids derived from the isolate, interacted with crucial amino acid residues of the target enzymes. Specifically, hydroxycitric acid formed hydrogen bonds with key amino acid residues, such as GLU233 and ASP197 in α-amylase, and ASN241, ARG312, GLU304, SER308, HIS279, PRO309, and PHE311 in α-glucosidase. In conclusion, Levilactobacillus brevis RAMULAB52, isolated from fermented papaya, possesses promising probiotic properties and exhibits potential as an effective remedy for diabetes. Its resistance to gastrointestinal conditions, antibacterial and antioxidant abilities, adhesion to different cell types, and significant inhibition of target enzymes make it a valuable candidate for further research and potential application in the field of probiotics and diabetes management.
Collapse
Affiliation(s)
- Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdel-Basit Al-Odayni
- Department of Restorative Dental Science, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| | - Victor Lasehinde
- Department of Biology, Washington University, St. Louis, MO, United States
| | - M. K. Jayanthi
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
15
|
Martiz RM, Kumari V. B. C, Huligere SS, Khan MS, Alafaleq NO, Ahmad S, Akhter F, Sreepathi N, P. A, Ramu R. Inhibition of carbohydrate hydrolyzing enzymes by a potential probiotic Levilactobacillus brevis RAMULAB49 isolated from fermented Ananas comosus. Front Microbiol 2023; 14:1190105. [PMID: 37389344 PMCID: PMC10303921 DOI: 10.3389/fmicb.2023.1190105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/15/2023] [Indexed: 07/01/2023] Open
Abstract
The research aimed to explore the potential probiotic characteristics of Levilactobacillus brevis RAMULAB49, a strain of lactic acid bacteria (LAB) isolated from fermented pineapple, specifically focusing on its antidiabetic effects. The importance of probiotics in maintaining a balanced gut microbiota and supporting human physiology and metabolism motivated this research. All collected isolates underwent microscopic and biochemical screenings, and those exhibiting Gram-positive characteristics, negative catalase activity, phenol tolerance, gastrointestinal conditions, and adhesion capabilities were selected. Antibiotic susceptibility was assessed, along with safety evaluations encompassing hemolytic and DNase enzyme activity tests. The isolate's antioxidant activity and its ability to inhibit carbohydrate hydrolyzing enzymes were examined. Additionally, organic acid profiling (LC-MS) and in silico studies were conducted on the tested extracts. Levilactobacillus brevis RAMULAB49 demonstrated desired characteristics such as Gram-positive, negative catalase activity, phenol tolerance, gastrointestinal conditions, hydrophobicity (65.71%), and autoaggregation (77.76%). Coaggregation activity against Micrococcus luteus, Pseudomonas aeruginosa, and Salmonella enterica serovar Typhimurium was observed. Molecular characterization revealed significant antioxidant activity in Levilactobacillus brevis RAMULAB49, with ABTS and DPPH inhibition rates of 74.85% and 60.51%, respectively, at a bacterial cell concentration of 109 CFU/mL. The cell-free supernatant exhibited substantial inhibition of α-amylase (56.19%) and α-glucosidase (55.69%) in vitro. In silico studies supported these findings, highlighting the inhibitory effects of specific organic acids such as citric acid, hydroxycitric acid, and malic acid, which displayed higher Pa values compared to other compounds. These outcomes underscore the promising antidiabetic potential of Levilactobacillus brevis RAMULAB49, isolated from fermented pineapple. Its probiotic properties, including antimicrobial activity, autoaggregation, and gastrointestinal conditions, contribute to its potential therapeutic application. The inhibitory effects on α-amylase and α-glucosidase activities further support its anti-diabetic properties. In silico analysis identified specific organic acids that may contribute to the observed antidiabetic effects. Levilactobacillus brevis RAMULAB49, as a probiotic isolate derived from fermented pineapple, holds promise as an agent for managing diabetes. Further investigations should focus on evaluating its efficacy and safety in vivo to consider its potential therapeutic application in diabetes management.
Collapse
Affiliation(s)
- Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Chandana Kumari V. B.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nouf Omar Alafaleq
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Navya Sreepathi
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini P.
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
16
|
V. H. P, Kuruburu MG, M. K. J, N. AS, Taha Babakr A, Sreenivasan R, Ramu R, Madhunapantula SV. Bioactive profiling and evaluation of anti-proliferative and anti-cancerous properties of Shivagutika, an Indian polyherbal formulation synchronizing in vitro and in silico approaches. Front Chem 2023; 11:1195209. [PMID: 37265589 PMCID: PMC10230648 DOI: 10.3389/fchem.2023.1195209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Shivagutika is a polyherbal formulation mentioned in Ayurveda, the oldest system of medicine. The aim of this study was to investigate the anti-breast cancer potential of DCM extract of Shivagutika using MCF-7, MDA-MB-231, and MDA-MB-468. Primarily, various extracts of Shivagutika were prepared and subjected to primary in vitro analysis-total protein, phenolic acid content, and flavonoid content. DCM extract among all the extracts showed the promising results hence, it was subjected to LC-MS/MS analysis to identify the phytochemicals. The same extract was subjected to anti-proliferation assay and anti-cancer assay. It inhibited all the 3 cell lines and increased the activity of Caspase 3, pro-apoptotic protein. Further, to find the potent molecule(s) in silico analysis (molecular docking and molecular dynamics simulation studies) was performed. Sciadopitysin was identified as a potent molecule among all phytochemicals as it interacted with Caspase 3 with a binding energy of -7.2 kcal/mol. MD simulation studies also revealed that Sciadopitysin was stable inside the binding pocket of Caspase 3 by interacting with the amino acids in the catalytic site thereby activating the Caspase 3 levels. By all the above results, Shivagutika could be used as a potent anti-breast cancer agent (specifically DCM extract of Shivagutika) which could decrease the cases of breast cancer in future.
Collapse
Affiliation(s)
- Pushpa V. H.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Mahadevaswamy G. Kuruburu
- Center of Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Jayanthi M. K.
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Akshaya Simha N.
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (A DST-FIST Supported Center), Department of Biochemistry (A DST-FIST Supported Department), JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Special Interest Group in Cancer Biology and Cancer Stem Cells (SIG-CBCSC), JSS Medical College, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| |
Collapse
|
17
|
Yadav N, Palkhede JD, Kim SY. Anti-Glucotoxicity Effect of Phytoconstituents via Inhibiting MGO-AGEs Formation and Breaking MGO-AGEs. Int J Mol Sci 2023; 24:7672. [PMID: 37108833 PMCID: PMC10141761 DOI: 10.3390/ijms24087672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The therapeutic benefits of phytochemicals in the treatment of various illnesses and disorders are well documented. They show significant promise for the discovery and creation of novel medications for treating a variety of human diseases. Numerous phytoconstituents have shown antibiotic, antioxidant, and wound-healing effects in the conventional system. Traditional medicines based on alkaloids, phenolics, tannins, saponins, terpenes, steroids, flavonoids, glycosides, and phytosterols have been in use for a long time and are crucial as alternative treatments. These phytochemical elements are crucial for scavenging free radicals, capturing reactive carbonyl species, changing protein glycation sites, inactivating carbohydrate hydrolases, fighting pathological conditions, and accelerating the healing of wounds. In this review, 221 research papers have been reviewed. This research sought to provide an update on the types and methods of formation of methylglyoxal-advanced glycation end products (MGO-AGEs) and molecular pathways induced by AGEs during the progression of the chronic complications of diabetes and associated diseases as well as to discuss the role of phytoconstituents in MGO scavenging and AGEs breaking. The development and commercialization of functional foods using these natural compounds can provide potential health benefits.
Collapse
Affiliation(s)
- Neera Yadav
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jyoti Dnyaneshwar Palkhede
- Department of Chemistry, College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Sun-Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
18
|
Kumari V B C, Huligere SS, Alotaibi G, Al Mouslem AK, Bahauddin AA, Shivanandappa TB, Ramu R. Antidiabetic Activity of Potential Probiotics Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. Isolated from Fermented Sugarcane Juice: A Comprehensive In Vitro and In Silico Study. Nutrients 2023; 15:nu15081882. [PMID: 37111101 PMCID: PMC10144524 DOI: 10.3390/nu15081882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics are regarded as a potential source of functional foods for improving the microbiota in human gut. When consumed, these bacteria can control the metabolism of biomolecules, which has numerous positive effects on health. Our objective was to identify a probiotic putative Lactobacillus spp. from fermented sugarcane juice that can prevent α-glucosidase and α-amylase from hydrolyzing carbohydrates. Isolates from fermented sugarcane juice were subjected to biochemical, molecular characterization (16S rRNA) and assessed for probiotic traits. Cell-free supernatant (CS) and extract (CE) and also intact cells (IC) were examined for the inhibitory effect on α-glucosidase and α-amylase. CS of the strain showed the highest inhibition and was subjected to a liquid chromatography-mass spectrometry (LCMS) analysis to determine the organic acid profile. The in silico approach was employed to assess organic acid stability and comprehend enzyme inhibitors' impact. Nine isolates were retained for further investigation based on the preliminary biochemical evaluation. Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. were identified based on similarity > 95% in homology search (NCBI database). The strains had a higher survival rate (>98%) than gastric and intestinal fluids, also a high capacity for adhesion (hydrophobicity > 56%; aggregation > 80%; HT-29 cells > 54%; buccal epithelial cells > 54%). The hemolytic assay indicated that the isolates could be considered safe. The isolates' derivatives inhibited enzymes to varying degrees, with α-glucosidase inhibition ranging from 21 to 85% and α-amylase inhibition from 18 to 75%, respectively. The CS of RAMULAB54 was profiled for organic acid that showed the abundance of hydroxycitric acid, citric acid, and lactic acid indicating their role in the observed inhibitory effects. The in silico approach has led us to understand that hydroxycitric acid has the ability to inhibit both the enzymes (α-glucosidase and α-amylase) effectively. Inhibiting these enzymes helps moderate postprandial hyperglycemia and regulates blood glucose levels. Due to their promising antidiabetic potential, these isolates can be used to enhance intestinal health.
Collapse
Affiliation(s)
- Chandana Kumari V B
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Sujay S Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| | - Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Al-Dawadmi Campus, Shaqra 11961, Saudi Arabia
| | - Abdulaziz K Al Mouslem
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Ammar Abdulraheem Bahauddin
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University, Madinah 42535, Saudi Arabia
| | | | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India
| |
Collapse
|
19
|
Kokila NR, Mahesh B, Ramu R, Roopashree B, Mruthunjaya K. α-Amylase inhibitory potential of Thunbergia mysorensis leaves extract and bioactive compounds by in vitro and computational approach. J Biomol Struct Dyn 2023; 41:14887-14903. [PMID: 36927385 DOI: 10.1080/07391102.2023.2190408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/18/2023] [Indexed: 03/18/2023]
Abstract
In this study, we aim to evaluate the anti-diabetic potential of Thunbergia mysorensis leaves methanolic extract (MeL) using inhibitory assays for α-glucosidase (AG), α-amylase (AM) (carbohydrate digestive enzymes) and aldose reductase (AR) (an enzyme involved in the polyol pathway responsible for glycation). In addition to antidiabetic studies, antioxidant studies were also performed due to the fact that reactive oxygen species (ROS) are produced by various pathways under diabetic conditions. Hyperglycemia induces ROS by activating the glycation reaction and the electron transport chain in mitochondria. The MeL effectively inhibited the enzymes (AG IC50: 27.86 ± 1.0, AM IC50: 12.00 ± 0.0, AR IC50: 4.50 ± 0.09 μg/mL) and showed effective radical ion scavenging activity during the antioxidant assay (DPPH EC50: 30.10 ± 0.75, ABTS EC50: 27.25 ± 1.00, Superoxide EC50: 35.00 ± 1.50 μg/mL). Using activity-guided repeated fractionation on a silica gel column chromatography, two compounds including 3,4-dimethoxy benzoic acid (DMBA) (101 mg) and 3,4-dimethoxy cinnamic acid (DMCA) (87 mg) with potent anti-diabetic activity were extracted from the MeL of T. mysorensis leaves. Both DMBA (IC50 AG: 27.00 ± 1.05, IC50 AM: 12.15 ± 0.10, IC50 AR: 4.86 ± 0.30 μg/mL) and DMCA (IC50 AG: 27.25 ± 0.98, IC50 AM: 12.50 ± 0.20, IC50 AR: 5.00 ± 1.00 μg/mL) were subjected for enzyme inhibition. Since both compounds significantly inhibited AM, enzyme kinetics for AM inhibition was performed. The compounds also showed effective antioxidant potential (DPPH EC50: 30.50 ± 0.99, ABTS EC50: 27.86 ± 0.16, Superoxide EC50: 36.10 ± 0.24 μg/mL), and DMCA (DPPH EC50: 31.00 ± 1.00, ABTS EC50: 28.00 ± 0.25, Superoxide EC50: 36.25 ± 0.37 μg/mL). Further, to elucidate the role of DMBA and DMCA in enzyme inhibition and stability at the molecular level, both compounds were subjected for in silico enzyme inhibitory studies using molecular docking simulation, molecular dynamics (MD) simulation, and binding free energy calculations. Compared to AR and AG, AM was the most significantly inhibited enzyme (DMBA: -6.6 and DMCA: -7.8 kcal/mol), and compounds combined with AM were subjected to MD simulation. Both compounds were stable in the binding pocket of AM till 100 ns and chiefly use Van der Waal's energy to bind. Compared to the controls, both DMBA and DMCA had a higher efficiency in the inhibition of target enzymes in vitro and in silico. The presence of DMBA and DMCA is more likely to be associated with the potential of MeL in antihyperglycemic activity. This bio-computational study indicates DMBA and DMCA as potential lead inhibitors of AM and could be used as effective anti-diabetic drugs in the near future.
Collapse
Affiliation(s)
- N R Kokila
- Department of Chemistry, JSS Academy of Technical Education (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, India
| | - B Mahesh
- Department of Chemistry, JSS Academy of Technical Education (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - B Roopashree
- Department of Chemistry, JSS Academy of Technical Education (Affiliated to Visvesvaraya Technological University, Belagavi), Bengaluru, India
| | - K Mruthunjaya
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
20
|
Patil SM, Phanindra B, Shirahatti PS, Martiz RM, Sajal H, Babakr AT, Ramu R. Computational approaches to define poncirin from Magnolia champaka leaves as a novel multi-target inhibitor of SARS-CoV-2. J Biomol Struct Dyn 2023; 41:13078-13097. [PMID: 36695109 DOI: 10.1080/07391102.2023.2171137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
Phytochemical-based drug discovery against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been the focus of the current scenario. In this context, we aimed to perform the phytochemical profiling of Magnolia champaka, an evergreen tree from the Magnoliaceae family, in order to perform a virtual screening of its phytoconstituents against different biological targets of SARS-CoV-2. The phytochemicals identified from the ethanol extract of M. champaka leaves using liquid chromatography-mass spectroscopy (LC-MS) technique were screened against SARS-CoV-2 spike glycoprotein (PDB ID: 6M0J), main protease/Mpro (PDB ID: 6LU7), and papain-like protease/PLpro (PDB ID: 7CMD) through computational tools. The experimentation design included molecular docking simulation, molecular dynamics simulation, and binding free energy calculations. Through molecular docking simulation, we identified poncirin as a common potential inhibitor of all the above-mentioned target proteins. In addition, molecular dynamics simulations, binding free energy calculations, and PCA analysis also supported the outcomes of the virtual screening. By the virtue of all the in silico results obtained, poncirin could be taken for in vitro and in vivo studies in near future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shashank M Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Bhaskar Phanindra
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | | | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Harshit Sajal
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry - College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
21
|
Maradesha T, Martiz RM, Patil SM, Prasad A, Babakr AT, Silina E, Stupin V, Achar RR, Ramu R. Integrated network pharmacology and molecular modeling approach for the discovery of novel potential MAPK3 inhibitors from whole green jackfruit flour targeting obesity-linked diabetes mellitus. PLoS One 2023; 18:e0280847. [PMID: 36716329 PMCID: PMC9886246 DOI: 10.1371/journal.pone.0280847] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
The current study investigates the effectiveness of phytocompounds from the whole green jackfruit flour methanol extract (JME) against obesity-linked diabetes mellitus using integrated network pharmacology and molecular modeling approach. Through network pharmacology, druglikeness and pharmacokinetics, molecular docking simulations, GO analysis, molecular dynamics simulations, and binding free energy analyses, it aims to look into the mechanism of the JME phytocompounds in the amelioration of obesity-linked diabetes mellitus. There are 15 predicted genes corresponding to the 11 oral bioactive compounds of JME. The most important of these 15 genes was MAPK3. According to the network analysis, the insulin signaling pathway has been predicted to have the strongest affinity to MAPK3 protein, which was chosen as the target. With regard to the molecular docking simulation, the greatest notable binding affinity for MAPK3 was discovered to be caffeic acid (-8.0 kJ/mol), deoxysappanone B 7,3'-dimethyl ether acetate (DBDEA) (-8.2 kJ/mol), and syringic acid (-8.5 kJ/mol). All the compounds were found to be stable inside the inhibitor binding pocket of the enzyme during molecular dynamics simulation. During binding free energy calculation, all the compounds chiefly used Van der Waal's free energy to bind with the target protein (caffeic acid: 102.296 kJ/mol, DBDEA: -104.268 kJ/mol, syringic acid: -100.171 kJ/mol). Based on these findings, it may be inferred that the reported JME phytocompounds could be used for in vitro and in vivo research, with the goal of targeting MAPK3 inhibition for the treatment of obesity-linked diabetes mellitus.
Collapse
Affiliation(s)
- Tejaswini Maradesha
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ashwini Prasad
- Department of Microbiology, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ekaterina Silina
- Institute of Biodesign and Modeling of Complex Systems, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Victor Stupin
- Department of Hospital Surgery 1, N.I. Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka, India
- * E-mail:
| |
Collapse
|
22
|
Shadakshari A, Suresha Kumara T, Kumar N, Jagadeep Chandra S, Anil Kumar K, Ramu R. Synthesis, Characterization, and biocomputational assessment of the novel 3-hydroxy-4-(phenyl(pyridin-2-ylamino) methyl)-2-naphthoic acid derivatives as potential dual inhibitors of α-glucosidase and α-amylase enzymes. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
23
|
Martiz RM, Patil SM, Thirumalapura Hombegowda D, Shbeer AM, Alqadi T, Al-Ghorbani M, Ramu R, Prasad A. Phyto-Computational Intervention of Diabetes Mellitus at Multiple Stages Using Isoeugenol from Ocimum tenuiflorum: A Combination of Pharmacokinetics and Molecular Modelling Approaches. Molecules 2022; 27:molecules27196222. [PMID: 36234759 PMCID: PMC9573403 DOI: 10.3390/molecules27196222] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
In the present study, the anti-diabetic potential of Ocimum tenuiflorum was investigated using computational techniques for α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages. It aimed to elucidate the mechanism by which phytocompounds of O. tenuiflorum treat diabetes mellitus using concepts of druglikeness and pharmacokinetics, molecular docking simulations, molecular dynamics simulations, and binding free energy studies. Isoeugenol is a phenylpropene, propenyl-substituted guaiacol found in the essential oils of plants. During molecular docking modelling, isoeugenol was found to inhibit all the target enzymes, with a higher binding efficiency than standard drugs. Furthermore, molecular dynamic experiments revealed that isoeugenol was more stable in the binding pockets than the standard drugs used. Since our aim was to discover a single lead molecule with a higher binding efficiency and stability, isoeugenol was selected. In this context, our study stands in contrast to other computational studies that report on more than one compound, making it difficult to offer further analyses. To summarize, we recommend isoeugenol as a potential widely employed lead inhibitor of α-glucosidase, α-amylase, aldose reductase, and glycation based on the results of our in silico studies, therefore revealing a novel phytocompound for the effective treatment of hyperglycemia and diabetes mellitus.
Collapse
Affiliation(s)
- Reshma Mary Martiz
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Shashank M. Patil
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | | | - Abdullah M. Shbeer
- Department of Surgery, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
- Correspondence: (A.M.S.); (R.R.); Tel.: +91-9986-380-920 (R.R.); Fax: +91-821-2548394 (R.R.)
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed Al-Ghorbani
- Department of Chemistry, College of Science and Arts, Ulla, Taibah University, Madina 41477, Saudi Arabia
- Department of Chemistry, College of Education, Thamar University, Thamar 425897, Yemen
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
- Correspondence: (A.M.S.); (R.R.); Tel.: +91-9986-380-920 (R.R.); Fax: +91-821-2548394 (R.R.)
| | - Ashwini Prasad
- Department of Microbiology, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| |
Collapse
|
24
|
Multiprotein Inhibitory Effect of Dietary Polyphenol Rutin from Whole Green Jackfruit Flour Targeting Different Stages of Diabetes Mellitus: Defining a Bio-Computational Stratagem. SEPARATIONS 2022. [DOI: 10.3390/separations9090262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The anti-diabetic potential of whole unripe jackfruit (peel with pulp, flake, and seed) was investigated using inhibitory assays for α-glucosidase, α-amylase, aldose reductase, and glycation at multiple stages. Using activity-guided repeated fractionation on a silica gel column chromatography, dietary flavonoid rutin with potent antihyperglycemic activity was extracted from the methanol extract of whole jackfruit flour (MJ). Rutin was found to inhibit both α-glucosidase (IC50: 7.86 µg/mL) and α-amylase (IC50: 22.00 µg/mL) in a competitive manner of inhibition with low Ki values. In addition, in vitro glycation experiments revealed that rutin prevented each stage of protein glycation as well as the production of intermediate molecules. Furthermore, rutin significantly inhibited aldose reductase (IC50: 2.75 µg/mL) in a non-competitive manner. During in silico studies, molecular docking and molecular dynamics simulation studies have suggested that rutin has a high binding affinity for the enzymes studied, which could explain its inhibitory effects. Rutin interacted with the key residues of the target enzymes’ inhibitor binding sites. Compared to the controls used, rutin had a higher binding efficiency as well as stability in the inhibitor binding pocket of the target enzymes. According to our findings, the presence of rutin is more likely to be associated with the potential of MJ in antihyperglycemic activity via inhibition of α-glucosidase and in anti-diabetic action via inhibition of the polyol pathway and protein glycation. The bio-computational study indicates rutin as a potential lead inhibitor of all the target enzymes used and could be used as an effective anti-diabetic drug in the near future.
Collapse
|