1
|
Gautam M, Gabrani R. Comparative analysis of α-pinene alone and combined with temozolomide in human glioblastoma cells. Nat Prod Res 2024; 38:3657-3662. [PMID: 37665021 DOI: 10.1080/14786419.2023.2252152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
α-Pinene (PEN) is a phyto compound present in terpene plants. In traditional medicine, PEN has been used for its anti-inflammatory, pain-relieving, and bronchodilator properties. The effect of PEN in combination with temozolomide (TMZ) in glioblastoma multiforme (GBM) cells has been evaluated. The action of the PEN + TMZ combination on cell migration, soft-agar, and cell death was determined in LN229 and U87MG human glioblastoma cells. In combination, PEN with TMZ showed a synergistic inhibitory effect in the GBM cells. The PEN + TMZ treatment showed a higher fluorescent intensity and reduced the percentage of wound area closure compared to the compound alone. The compounds in combination also resulted in a reduction in single-cell colony formation. To conclude, the study showed that plant-derived PEN enhanced the effectiveness of standard chemotherapeutic, TMZ, in LN229 and U87MG cells.
Collapse
Affiliation(s)
- Megha Gautam
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Reema Gabrani
- Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| |
Collapse
|
2
|
Kim D, Go SH, Song Y, Lee DK, Park JR. Decursin Induces G1 Cell Cycle Arrest and Apoptosis through Reactive Oxygen Species-Mediated Endoplasmic Reticulum Stress in Human Colorectal Cancer Cells in In Vitro and Xenograft Models. Int J Mol Sci 2024; 25:9939. [PMID: 39337425 PMCID: PMC11432441 DOI: 10.3390/ijms25189939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Decursin, a coumarin isolated from Angelica gigas Nakai, possesses anti-inflammatory and anti-cancer properties. However, the molecular mechanisms underlying its anti-cancer effects against human colorectal cancer (CRC) are unclear. Therefore, this study aimed to evaluate the biological activities of decursin in CRC in vitro and in vivo and to determine its underlying mechanism of action. Decursin exhibited anti-tumor activity in vitro, accompanied by an increase in G1 cell cycle arrest and apoptosis in HCT-116 and HCT-8 CRC cells. Decursin also induced the production of reactive oxygen species (ROS), thereby activating the endoplasmic reticulum (ER) stress apoptotic pathway in CRC cells. Furthermore, the role of ROS in decursin-induced apoptosis was investigated using the antioxidant N-acetyl-L-cysteine. Inhibiting ROS production reversed decursin-induced ER stress. Moreover, decursin significantly suppressed tumor growth in a subcutaneous xenograft mouse model of HCT-116 and HCT-8 CRC cells without causing host toxicity. Decursin also decreased cell proliferation, as documented by Ki-67, and partly increased cleaved caspase 3 expression in tumor tissues by activating ER stress apoptotic pathways. These findings suggest that decursin induces cell cycle arrest and apoptosis in human CRC cells via ROS-mediated ER stress, suggesting that decursin could be a therapeutic agent for CRC.
Collapse
Affiliation(s)
| | | | | | - Dong-Keon Lee
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Republic of Korea; (D.K.); (S.-H.G.); (Y.S.)
| | - Jeong-Ran Park
- Division of Research Center, Scripps Korea Antibody Institute, Chuncheon 24341, Republic of Korea; (D.K.); (S.-H.G.); (Y.S.)
| |
Collapse
|
3
|
Talib WH, Abed I, Raad D, Alomari RK, Jamal A, Jabbar R, Alhasan EOA, Alshaeri HK, Alasmari MM, Law D. Targeting Cancer Hallmarks Using Selected Food Bioactive Compounds: Potentials for Preventive and Therapeutic Strategies. Foods 2024; 13:2687. [PMID: 39272454 PMCID: PMC11395675 DOI: 10.3390/foods13172687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer continues to be a prominent issue in healthcare systems, resulting in approximately 9.9 million fatalities in 2020. It is the second most common cause of death after cardiovascular diseases. Although there are difficulties in treating cancer at both the genetic and phenotypic levels, many cancer patients seek supplementary and alternative medicines to cope with their illness, relieve symptoms, and reduce the side effects of cytotoxic drug therapy. Consequently, there is an increasing emphasis on studying natural products that have the potential to prevent or treat cancer. Cancer cells depend on multiple hallmarks to secure survival. These hallmarks include sustained proliferation, apoptosis inactivation, stimulation of angiogenesis, immune evasion, and altered metabolism. Several natural products from food were reported to target multiple cancer hallmarks and can be used as adjuvant interventions to augment conventional therapies. This review summarizes the main active ingredients in food that have anticancer activities with a comprehensive discussion of the mechanisms of action. Thymoquinone, allicin, resveratrol, parthenolide, Epigallocatechin gallate, and piperine are promising anticancer bioactive ingredients in food. Natural products discussed in this review provide a solid ground for researchers to provide effective anticancer functional food.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Ilia Abed
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Daniah Raad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Raghad K Alomari
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Ayah Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rand Jabbar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eman Omar Amin Alhasan
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
4
|
Kumar S, Arwind DA, Kumar B H, Pandey S, Nayak R, Vithalkar MP, Kumar N, Pai KSR. Inhibition of STAT3: A promising approach to enhancing the efficacy of chemotherapy in medulloblastoma. Transl Oncol 2024; 46:102023. [PMID: 38852276 PMCID: PMC11220551 DOI: 10.1016/j.tranon.2024.102023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024] Open
Abstract
Medulloblastoma is a type of brain cancer that primarily affects children. While chemotherapy has been shown to be effective in treating medulloblastoma, the development of chemotherapy resistance remains a challenge. One potential therapeutic approach is to selectively inhibit the inducible transcription factor called STAT3, which is known to play a crucial role in the survival and growth of tumor cells. The activation of STAT3 has been linked to the growth and progression of various cancers, including medulloblastoma. Inhibition of STAT3 has been shown to sensitize medulloblastoma cells to chemotherapy, leading to improved treatment outcomes. Different approaches to STAT3 inhibition have been developed, including small-molecule inhibitors and RNA interference. Preclinical studies have shown the efficacy of STAT3 inhibitors in medulloblastoma, and clinical trials are currently ongoing to evaluate their safety and effectiveness in patients with various solid tumors, including medulloblastoma. In addition, researchers are also exploring ways to optimize the use of STAT3 inhibitors in combination with chemotherapy and identify biomarkers that can predict treatment that will help to develop personalized treatment strategies. This review highlights the potential of selective inhibition of STAT3 as a novel approach for the treatment of medulloblastoma and suggests that further research into the development of STAT3 inhibitors could lead to improved outcomes for patients with aggressive cancer.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Dube Aakash Arwind
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Samyak Pandey
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Raksha Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Megh Pravin Vithalkar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Nitesh Kumar
- Department of Pharmacology and toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali-844102, Bihar, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, India.
| |
Collapse
|
5
|
Passos CLA, Ferreira C, de Carvalho AGA, Silva JL, Garrett R, Fialho E. Oxyresveratrol in Breast Cancer Cells: Synergistic Effect with Chemotherapeutics Doxorubicin or Melphalan on Proliferation, Cell Cycle Arrest, and Cell Death. Pharmaceutics 2024; 16:873. [PMID: 39065570 PMCID: PMC11279446 DOI: 10.3390/pharmaceutics16070873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the second most common type of cancer in the world. Polyphenols can act at all stages of carcinogenesis and oxyresveratrol (OXY) promising anticancer properties, mainly associated with chemotherapy drugs. The aim of this study was to investigate the effect of OXY with doxorubicin (DOX) or melphalan (MEL), either isolated or associated, in MCF-7 and MDA-MB-231 breast cancer cells. Our results showed that OXY, DOX, and MEL presented cytotoxicity, in addition to altering cell morphology. The synergistic association of OXY + DOX and OXY + MEL reduced the cell viability in a dose-dependent manner. The OXY, DOX, or MEL and associations were able to alter the ROS production, ∆Ψm, and cell cycle; DOX and OXY + DOX led the cells to necrosis. Furthermore, OXY and OXY + MEL were able to lead the cells to apoptosis and upregulate caspases-3, -7, -8, and -9 in both cells. LC-HRMS showed that 7-deoxidoxorubicinone and doxorubicinol, responsible for the cardiotoxic effect, were not identified in cells treated with the OXY + DOX association. In summary, our results demonstrate for the first time the synergistic effect of OXY with chemotherapeutic agents in breast cancer cells, offering a new strategy for future animal studies.
Collapse
Affiliation(s)
- Carlos Luan Alves Passos
- Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.A.P.); (C.F.)
| | - Christian Ferreira
- Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.A.P.); (C.F.)
| | | | - Jerson Lima Silva
- Medical Biochemistry Institute Leopoldo De Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Rafael Garrett
- Chemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, RJ, Brazil; (A.G.A.d.C.); (R.G.)
| | - Eliane Fialho
- Nutrition Institute Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (C.L.A.P.); (C.F.)
| |
Collapse
|
6
|
Mangla B, Mittal P, Kumar P, Aggarwal G. Multifaceted role of erlotinib in various cancer: nanotechnology intervention, patent landscape, and advancements in clinical trials. Med Oncol 2024; 41:173. [PMID: 38864966 DOI: 10.1007/s12032-024-02414-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Erlotinib (ELB) is a tyrosine kinase inhibitor that targets the activity of Epidermal Growth Factor Receptor (EGFR) protein found in both healthy and cancerous cells. It binds reversibly to the ATP-binding site of the EGFR tyrosine kinase. ELB was approved by the US Food and Drug Administration (FDA) in 2004 for advanced non-small cell lung cancer (NSCLC) treatment in patients who relapsed after at least one other therapy. It was authorized for use with gemcitabine in 2005 for the treatment of advanced pancreatic cancer. In addition to lung cancer, ELB has shown promising results in the treatment of other cancers, including breast, prostate, colon, pancreatic, cervical, ovarian, and head and neck cancers. However, its limited water solubility, as a BCS class II drug, presents biopharmaceutical problems. Nanoformulations have been developed to overcome these issues, including increased solubility, controlled release, enhanced stability, tumor accumulation, reduced toxicity, and overcoming drug resistance. In older patients, ELB management should involve individualized dosing based on age-related changes in drug metabolism and close monitoring for adverse effects. Regular assessments of renal and hepatic functions are essential. This review provides an overview of ELB's role of ELB in treating various cancers, its associated biopharmaceutical issues, and the latest developments in ELB-related nanotechnology interventions. It also covers ELB patents granted in previous years and the ongoing clinical trials.
Collapse
Affiliation(s)
- Bharti Mangla
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Priya Mittal
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Pankaj Kumar
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Geeta Aggarwal
- Centre for Advanced Formulation and Technology, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
7
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
8
|
Gollapalli P, Ashok AK, G TS. System-level protein interaction network analysis and molecular dynamics study reveal interaction of ferulic acid with PTGS2 as a natural radioprotector. J Biomol Struct Dyn 2024; 42:2765-2781. [PMID: 37144749 DOI: 10.1080/07391102.2023.2208224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Ferulic acid is a crucial bioactive component of broccoli, wheat, and rice bran and is also an essential natural product that has undergone significant research. Ferulic acid's precise mode of action and effect on system-level protein networks have not been thoroughly investigated. An interactome was built using the STRING database and Cytoscape tools, utilizing 788 key proteins collected from PubMed literature to identify the ferulic acid-governed regulatory action on protein interaction network (PIN). The scale-free biological network of ferulic acid-rewired PIN is highly interconnected. We discovered 15 sub-modules using the MCODE tool for sub-modulization analysis and 153 enriched signaling pathways. Further, functional enrichment of top bottleneck proteins revealed the FoxO signaling pathway involved in enhancing cellular defense against oxidative stress. The selection of the critical regulatory proteins of the ferulic acid-rewired PIN was completed by performing analyses of topological characteristics such as GO term/pathways analysis, degree, bottleneck, molecular docking, and dynamics investigations. The current research derives a precise molecular mechanism for ferulic acid's action on the body. This in-depth in silico model would aid in understanding how ferulic acid origins its antioxidant and scavenging properties in the human body.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Center for Bioinformatics and Biostatistics, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Avinash Karkada Ashok
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, Karnataka, India
| | - Tamizh Selvan G
- Central Research Laboratory, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| |
Collapse
|
9
|
de Morais EF, de Oliveira LQR, de Farias Morais HG, de Souto Medeiros MR, Freitas RDA, Rodini CO, Coletta RD. The Anticancer Potential of Kaempferol: A Systematic Review Based on In Vitro Studies. Cancers (Basel) 2024; 16:585. [PMID: 38339336 PMCID: PMC10854650 DOI: 10.3390/cancers16030585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Given the heterogeneity of different malignant processes, planning cancer treatment is challenging. According to recent studies, natural products are likely to be effective in cancer prevention and treatment. Among bioactive flavonoids found in fruits and vegetables, kaempferol (KMP) is known for its anti-inflammatory, antioxidant, and anticancer properties. This systematic review aims to highlight the potential therapeutic effects of KMP on different types of solid malignant tumors. This review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Searches were performed in EMBASE, Medline/PubMed, Cochrane Collaboration Library, Science Direct, Scopus, and Google Scholar. After the application of study criteria, 64 studies were included. In vitro experiments demonstrated that KMP exerts antitumor effects by controlling tumor cell cycle progression, proliferation, apoptosis, migration, and invasion, as well as by inhibiting angiogenesis. KMP was also able to inhibit important markers that regulate epithelial-mesenchymal transition and enhanced the sensitivity of cancer cells to traditional drugs used in chemotherapy, including cisplatin and 5-fluorouracil. This flavonoid is a promising therapeutic compound and its combination with current anticancer agents, including targeted drugs, may potentially produce more effective and predictable results.
Collapse
Affiliation(s)
- Everton Freitas de Morais
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Lilianny Querino Rocha de Oliveira
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| | - Hannah Gil de Farias Morais
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Maurília Raquel de Souto Medeiros
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Roseana de Almeida Freitas
- Postgraduate Program in Oral Science, Federal University of Rio Grande do Norte, Natal 59000-000, RN, Brazil; (H.G.d.F.M.); (M.R.d.S.M.); (R.d.A.F.)
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, SP, Brazil;
| | - Ricardo D. Coletta
- Graduate Program in Oral Biology, Department of Oral Diagnosis, School of Dentistry, University of Campinas, Piracicaba 13414-018, SP, Brazil; (E.F.d.M.); (L.Q.R.d.O.)
| |
Collapse
|
10
|
Khamis AA, Ali EMM, Salim EI, El-Moneim MAA. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats. Sci Rep 2024; 14:1510. [PMID: 38233443 PMCID: PMC10794414 DOI: 10.1038/s41598-023-50729-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/23/2023] [Indexed: 01/19/2024] Open
Abstract
Breast cancer ranks as the second leading most significant of mortality for women. Studies have demonstrated the potential benefits of natural compounds in cancer treatment and prevention, either in isolation or in conjunction with chemotherapy. In order to improve Tamoxifen's therapeutic efficacy in in-vivo studies, our research sought to determine the effects of hesperidin, piperine, and bee venom as natural compounds, as well as their combination effect with or without Tamoxifen. First, 132 female albino rats were equally divided into six groups and five subgroups, and breast cancer was induced in the selected groups by xenografting of MCF7 cells. Second, the effect of single and best ratio combinations treatment from previous in vitro studies were selected. Next, tumorous mammary glands were collected for apoptotic and antiapoptotic biomarkers and cell cycle analysis. Single or combined natural products with or without Tamoxifen revealed a significant up-regulation in apoptotic genes Bax and Casp3 and a downregulation of antiapoptotic and angiogenesis genes Bcl-2 and VEGF genes. We found that cell cycle arrest in the G0/G1 phase was exclusively caused by Tamoxifen and/ or hesperidin. However, the cell cycle arrest in the G2/M phase is a result of the combination of piperine and bee venom, with or without Tamoxifen by using the flow cytometric technique. Our research concludes that bee venom, hesperidin, and piperine can synergistically enhance to increase Tamoxifen's efficiency in the management of breast cancer.
Collapse
Affiliation(s)
- Abeer A Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Ehab M M Ali
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Elsayed I Salim
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed A Abd El-Moneim
- Biochemistry Department, Faculty of Dentistry, Sinai University, Al-Arish, North Sinai, Egypt
| |
Collapse
|
11
|
Zhang G, Wang L, Zhao L, Yang F, Lu C, Yan J, Zhang S, Wang H, Li Y. Silibinin Induces Both Apoptosis and Necroptosis with Potential Anti-tumor Efficacy in Lung Cancer. Anticancer Agents Med Chem 2024; 24:1327-1338. [PMID: 39069713 DOI: 10.2174/0118715206295371240724092314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/14/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The incidence of lung cancer is steadily on the rise, posing a growing threat to human health. The search for therapeutic drugs from natural active substances and elucidating their mechanism have been the focus of anti-tumor research. OBJECTIVE Silibinin (SiL) has been shown to be a natural product with a wide range of pharmacological activities, including anti-tumour activity. In our work, SiL was chosen as a possible substance that could inhibit lung cancer. Moreover, its effects on inducing tumor cell death were also studied. METHODS CCK-8 analysis and morphological observation were used to assess the cytotoxic impacts of SiL on lung cancer cells in vitro. The alterations in mitochondrial membrane potential (MMP) and apoptosis rate of cells were detected by flow cytometry. The level of lactate dehydrogenase (LDH) release out of cells was measured. The expression changes of apoptosis or necroptosis-related proteins were detected using western blotting. Protein interactions among RIPK1, RIPK3, and MLKL were analyzed using the co-immunoprecipitation (co-IP) technique. Necrosulfonamide (Nec, an MLKL inhibitor) was used to carry out experiments to assess the changes in apoptosis following the blockade of cell necroptosis. in vitro, SiL was evaluated for its antitumor effects using LLC tumor-bearing mice with mouse lung cancer. RESULTS With an increased dose of SiL, the proliferation ability of A549 cells was considerably inhibited, and the accompanying cell morphology changed. The results of flow cytometry showed that after SiL treatment, MMP levels decreased, and the proportion of cells undergoing apoptosis increased. There was an increase in cleaved caspase-9, caspase-3, and PARP, with a down-regulation of Bcl-2 and an up-regulation of Bax. In addition, the amount of LDH released from the cells increased following SiL treatment, accompanied by augmented expression and phosphorylation levels of necroptosis-related proteins (MLKL, RIPK1, and RIPK3), and the co-IP assay further confirmed the interactions among these three proteins, indicating the necrosome formation induced by SiL. Furthermore, Nec increased the apoptotic rate of SiL-treated cells and aggravated the cytotoxic effect of SiL, indicating that necroptosis blockade could switch cell death to apoptosis and increase the inhibitory effect of SiL on A549 cells. In LLC-bearing mice, gastric administration of SiL significantly inhibited tumor growth, and H&E staining showed significant damage to the tumour tissue. The results of the IHC showed that the expression of RIPK1, RIPK3, and MLKL was more pronounced in the tumor tissue. CONCLUSIONS This study confirmed the dual effect of SiL, as it can induce both biological processes, apoptosis and necroptosis, in lung cancer. SiL-induced apoptosis involved the mitochondrial pathway, as indicated by changes in caspase-9, Bcl-2, and Bax. Necroptosis may be activated due to the changes in the expression of associated proteins in tumour cells and tissues. It has been observed that blocking necroptosis by SiL increased cell death efficiency. This study helps clarify the anti-tumor mechanism of SiL against lung cancer, elucidating its role in the dual induction of apoptosis and necroptosis. Our work provides an experimental basis for the research on cell death induced by SiL and reveals its possible applications for improving the management of lung cancer.
Collapse
Affiliation(s)
- Guoqing Zhang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Li Wang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Limei Zhao
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Fang Yang
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Chunhua Lu
- Medical Experimental Center, The First People's Hospital of Nanning, Nanning, Guangxi, 530021, P.R. China
| | - Jianhua Yan
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| | - Song Zhang
- Department of Gastroenterology, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, P.R. China
| | - Haiping Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, Hubei, 430056, P.R. China
| | - Yixiang Li
- Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, P.R. China
| |
Collapse
|
12
|
Maheshwari N, Sharma MC. Photoresponsive 'chemo-free' phytotherapy: formulation development for the treatment of triple-negative breast cancer. Nanomedicine (Lond) 2024; 19:5-24. [PMID: 38179960 DOI: 10.2217/nnm-2023-0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Aim: The present investigation aimed to develop a chemo-free, nanophytosomal system to treat triple-negative breast cancer (TNBC) via a phyto-photo dual treatment strategy. Method: Size, shape, surface analysis, photoprovoked release profile, photothermal stability, (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide assay, apoptotic assay, DNA fragmentation, in vitro cellular uptake evaluation, mitochondrial membrane potential and caspase-3 assay, and photodynamic evaluation. Results: Biological experiments using MDA-MB-231 cells displayed dose-dependent synergistic anti-TNBC activity of PhytoS/Houttuynia cordata extract (HCE)/IR780 as compared with Phyto/HCE, PhytoS/IR780 and even more promising under laser treatment. Apoptotic assay and DNA fragmentation analysis also showed enhanced anti-TNBC effects. Investigation found that HCE acts via suppression of mitochondrial membrane potential and inducing caspase-3 activity in cells. Conclusion: Our findings suggested that photo-empowered phytotherapy can be employed effectively and safely against TNBC.
Collapse
Affiliation(s)
- Neha Maheshwari
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Indore, Madhya Pradesh, 452001, India
| | - Mukesh C Sharma
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshila Campus, Indore, Madhya Pradesh, 452001, India
| |
Collapse
|
13
|
Budi HS, Farhood B. Tumor microenvironment remodeling in oral cancer: Application of plant derived-natural products and nanomaterials. ENVIRONMENTAL RESEARCH 2023; 233:116432. [PMID: 37331557 DOI: 10.1016/j.envres.2023.116432] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
Oral cancers consist of squamous cell carcinoma (SCC) and other malignancies in the mouth with varying degrees of invasion and differentiation. For many years, different modalities such as surgery, radiation therapy, and classical chemotherapy drugs have been used to control the growth of oral tumors. Nowadays, studies have confirmed the remarkable effects of the tumor microenvironment (TME) on the development, invasion, and therapeutic resistance of tumors like oral cancers. Therefore, several studies have been conducted to modulate the TME in various types of tumors in favor of cancer suppression. Natural products are intriguing agents for targeting cancers and TME. Flavonoids, non-flavonoid herbal-derived molecules, and other natural products have shown promising effects on cancers and TME. These agents, such as curcumin, resveratrol, melatonin, quercetin and naringinin have demonstrated potency in suppressing oral cancers. In this paper, we will review and discuss about the potential efficacy of natural adjuvants on oral cancer cells. Furthermore, we will review the possible therapeutic effects of these agents on the TME and oral cancer cells. Moreover, the potential of nanoparticles-loaded natural products for targeting oral cancers and TME will be reviewed. The potentials, gaps, and future perspectives for targeting TME by nanoparticles-loaded natural products will also be discussed.
Collapse
Affiliation(s)
- Hendrik Setia Budi
- Department of Oral Biology, Dental Pharmacology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
14
|
Abdel-Sattar OE, Allam RM, Al-Abd AM, El-Halawany AM, EL-Desoky AM, Mohamed SO, Sweilam SH, Khalid M, Abdel-Sattar E, Meselhy MR. Hypophyllanthin and Phyllanthin from Phyllanthus niruri Synergize Doxorubicin Anticancer Properties against Resistant Breast Cancer Cells. ACS OMEGA 2023; 8:28563-28576. [PMID: 37576627 PMCID: PMC10413485 DOI: 10.1021/acsomega.3c02953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023]
Abstract
Doxorubicin (DOX) is a cornerstone chemotherapeutic agent for the treatment of several malignancies such as breast cancer; however, its activity is ameliorated by the development of a resistant phenotype. Phyllanthus species have been studied previously for their potential anticancer properties. The current work is aimed to study the potential cytotoxicity and chemomodulatory effects of hypophyllanthin (PN4) and phyllanthin (PN5) isolated from Phyllanthus niruri to DOX against the adriamycin multidrug-resistant breast cancer cells (MCF-7ADR) and elucidate their mechanism of action. The major compounds of the active methylene chloride fraction were isolated and assessed for their potential cytotoxicity and chemomodulatory effects on DOX against naïve (MCF-7) and resistant breast (MCF-7ADR) cancer cells. The mechanism of action of both compounds in terms of their impacts on programmed/non-programmed cell death (apoptosis and autophagy/necrosis), cell cycle progression/arrest, and tumor cell migration/invasion was investigated. Both compounds PN4 and PN5 showed a moderate but similar potency against MCF-7 as well as MCF-7ADR and significantly synergized DOX-induced anticancer properties against MCF-7ADR. The chemomodulatory effect of both compounds to DOX was found to be via potentiating DOX-induced cell cycle interference and apoptosis induction. It was found that PN4 and PN5 blocked the apoptosis-escape autophagy pathway in MCF-7ADR. On the molecular level, both compounds interfered with SIRT1 expression and consequently suppressed Akt phosphorylation, and PN5 blocked apoptosis escape. Furthermore, PN4 and PN5 showed promising antimigratory and anti-invasive effects against MCF-7ADR, as confirmed by suppression of N-cadherin/β-catenin expression. In conclusion, for the first time, hypophyllanthin and phyllanthin isolated from P. niruri showed promising chemomodulatory effects to the DOX-induced chemotherapeutic activity against MCF-7ADR. Both compounds significantly synergized DOX-induced anticancer properties against MCF-7ADR. This enhanced activity was explained by further promoting DOX-induced apoptosis and suppressing the apoptosis-escape autophagy feature of the resistant breast cancer cells. Both compounds (hypophyllanthin and phyllanthin) interfered with the SIRT1/Akt pathway and suppressed the N-cadherin/β-catenin axis, confirming the observed antiproliferative, cytotoxic, and anti-invasive effects of hypophyllanthin and phyllanthin.
Collapse
Affiliation(s)
- Ola E. Abdel-Sattar
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Rasha M. Allam
- Pharmacology
Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M. Al-Abd
- Pharmacology
Department, Medical Research Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ali M. El-Halawany
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Ahmed M. EL-Desoky
- Department of Molecular Biology,
Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City (USC), Sadat City 32958, Egypt
| | - Shanaz O. Mohamed
- School of Pharmaceutical
Sciences, Universiti Sains Malaysia, Gelugor, Penang 11700, Malaysia
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of
Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Essam Abdel-Sattar
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| | - Meselhy R. Meselhy
- Pharmacognosy Department,
Faculty of Pharmacy, Cairo University, Kasr El Aini St., Cairo 11562, Egypt
| |
Collapse
|
15
|
Khamis T, Diab AAAA, Zahra MH, El-Dahmy SE, Abd Al-Hameed BA, Abdelkhalek A, Said MA, Abdellatif H, Fericean LM, Banatean-Dunea I, Arisha AH, Attia MS. The Antiproliferative Activity of Adiantum pedatum Extract and/or Piceatannol in Phenylhydrazine-Induced Colon Cancer in Male Albino Rats: The miR-145 Expression of the PI-3K/ Akt/ p53 and Oct4/ Sox2/ Nanog Pathways. Molecules 2023; 28:5543. [PMID: 37513415 PMCID: PMC10383735 DOI: 10.3390/molecules28145543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Colon cancer is one of the most common types of cancer worldwide, and its incidence is increasing. Despite advances in medical science, the treatment of colon cancer still poses a significant challenge. This study aimed to investigate the potential protective effects of Adiantum pedatum (AP) extract and/or piceatannol on colon cancer induced via phenylhydrazine (PHZ) in terms of the antioxidant and apoptotic pathways and histopathologic changes in the colons of male albino rats. The rats were randomly divided into eight groups: control, AP extract, piceatannol (P), PHZ, PHZ and AP treatments, PHZ and P treatments, PHZ and both AP and P, and PHZ and prophylaxis with both AP and P. The results demonstrated that PHZ induced oxidative damage, apoptosis, and histopathological changes compared to the control group. However, the administration of AP or P or AP + P as therapy or prophylaxis significantly ameliorated these changes and upregulated the colonic mir-145 and mRNA expression of P53 and PDCD-4 while downregulating the colonic mRNA expression of PI3K, AKT, c-Myc, CK-20, SOX-2, OCT-4, and NanoG compared to the PHZ group. These findings suggest that the candidate drugs may exert their anti-cancer effects through multiple mechanisms, including antioxidant and apoptotic activities.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mansour H Zahra
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Samih Ebrahim El-Dahmy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | | | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
| | - Mahmoud A Said
- Zagazig University Hospital, Zagazig University, Zagazig 44511, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Liana Mihaela Fericean
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I" from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I" from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mai S Attia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
16
|
Virmani T, Kumar G, Sharma A, Pathak K, Akhtar MS, Afzal O, Altamimi ASA. Amelioration of Cancer Employing Chitosan, Its Derivatives, and Chitosan-Based Nanoparticles: Recent Updates. Polymers (Basel) 2023; 15:2928. [PMID: 37447573 DOI: 10.3390/polym15132928] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The limitations associated with the conventional treatment of cancer have necessitated the design and development of novel drug delivery systems based mainly on nanotechnology. These novel drug delivery systems include various kinds of nanoparticles, such as polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carriers, hydrogels, and polymeric micelles. Among the various kinds of novel drug delivery systems, chitosan-based nanoparticles have attracted the attention of researchers to treat cancer. Chitosan is a polycationic polymer generated from chitin with various characteristics such as biocompatibility, biodegradability, non-toxicity, and mucoadhesiveness, making it an ideal polymer to fabricate drug delivery systems. However, chitosan is poorly soluble in water and soluble in acidic aqueous solutions. Furthermore, owing to the presence of reactive amino groups, chitosan can be chemically modified to improve its physiochemical properties. Chitosan and its modified derivatives can be employed to fabricate nanoparticles, which are used most frequently in the pharmaceutical sector due to their possession of various characteristics such as nanosize, appropriate pharmacokinetic and pharmacodynamic properties, non-immunogenicity, improved stability, and improved drug loading capacity. Furthermore, it is capable of delivering nucleic acids, chemotherapeutic medicines, and bioactives using modified chitosan. Chitosan and its modified derivative-based nanoparticles can be targeted to specific cancer sites via active and passive mechanisms. Based on chitosan drug delivery systems, many anticancer drugs now have better effectiveness, potency, cytotoxicity, or biocompatibility. The characteristics of chitosan and its chemically tailored derivatives, as well as their use in cancer therapy, will be examined in this review.
Collapse
Affiliation(s)
- Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Haryana 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206001, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
17
|
Parisi V, Donadio G, Bellone ML, Belaabed S, Bader A, Bisio A, Iobbi V, Gazzillo E, Chini MG, Bifulco G, Faraone I, Vassallo A. Exploring the Anticancer Potential of Premna resinosa (Hochst.) Leaf Surface Extract: Discovering New Diterpenes as Heat Shock Protein 70 (Hsp70) Binding Agents. PLANTS (BASEL, SWITZERLAND) 2023; 12:2421. [PMID: 37446982 DOI: 10.3390/plants12132421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Premna, a genus consisting of approximately 200 species, predominantly thrives in tropical and subtropical areas. Many of these species have been utilized in ethnopharmacology for diverse medicinal applications. In Saudi Arabia, Premna resinosa (Hochst.) Schauer (Lamiaceae) grows wildly, and its slightly viscid leaves are attributed to the production of leaf accession. In this study, we aimed to extract the surface accession from fresh leaves using dichloromethane to evaluate the anticancer potential. The plant exudate yielded two previously unknown labdane diterpenes, Premnaresone A and B, in addition to three already described congeners and four known flavonoids. The isolation process was accomplished using a combination of silica gel column chromatography and semi-preparative HPLC, the structures of which were identified by NMR and HRESIMS analyses and a comparison with the literature data of associated compounds. Furthermore, we employed a density functional theory (DFT)/NMR approach to suggest the relative configuration of different compounds. Consequently, we investigated the possibility of developing new chaperone inhibitors by subjecting diterpenes 1-5 to a Surface Plasmon Resonance-screening, based on the knowledge that oridonin, a diterpene, interacts with Heat Shock Protein 70 (Hsp70) 1A in cancer cells. Additionally, we studied the anti-proliferative activity of compounds 1-5 on human Jurkat (human T-cell lymphoma) and HeLa (epithelial carcinoma) cell lines, where diterpene 3 exhibited activity in Jurkat cell lines after 48 h, with an IC50 of 15.21 ± 1.0 µM. Molecular docking and dynamic simulations revealed a robust interaction between compound 3 and Hsp70 key residues.
Collapse
Affiliation(s)
- Valentina Parisi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Soumia Belaabed
- Department of Chemistry, Research Unit, Development of Natural Resources, Bioactive Molecules Physicochemical and Biological Analysis, University Brothers Mentouri, Route Ain ElBey, Constantine 25000, Algeria
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Angela Bisio
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Valeria Iobbi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Erica Gazzillo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Maria Giovanna Chini
- Department of Biosciences and Territory, University of Molise, C.da Fonte Lappone, 86090 Pesche, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Innovative Startup Farmis s.r.l., Via Nicola Vaccaro 40, 85100 Potenza, Italy
| | - Antonio Vassallo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
- Spinoff TNcKILLERS s.r.l., Viale dell'Ateneo Lucano 10, 85100 Potenza, Italy
| |
Collapse
|
18
|
Cheng L, Li S, He K, Kang Y, Li T, Li C, Zhang Y, Zhang W, Huang Y. Melatonin regulates cancer migration and stemness and enhances the anti-tumour effect of cisplatin. J Cell Mol Med 2023. [PMID: 37307404 PMCID: PMC10399526 DOI: 10.1111/jcmm.17809] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023] Open
Abstract
Melatonin, a lipophilic hormone released from the pineal gland, has oncostatic effects on various types of cancers. However, its cancer treatment potential needs to be improved by deciphering its corresponding mechanisms of action and optimising therapeutic strategy. In the present study, melatonin inhibited gastric cancer cell migration and soft agar colony formation. Magnetic-activated cell sorting was applied to isolate CD133+ cancer stem cells. Gene expression analysis showed that melatonin lowered the upregulation of LC3-II expression in CD133+ cells compared to CD133- cells. Several long non-coding RNAs and many components in the canonical Wnt signalling pathway were altered in melatonin-treated cells. In addition, knockdown of long non-coding RNA H19 enhanced the expression of pro-apoptotic genes, Bax and Bak, induced by melatonin treatment. Combinatorial treatment with melatonin and cisplatin was investigated to improve the applicability of melatonin as an anticancer therapy. Combinatorial treatment increased the apoptosis rate and induced G0/G1 cell cycle arrest. Melatonin can regulate migration and stemness in gastric cancer cells by modifying many signalling pathways. Combinatorial treatment with melatonin and cisplatin has the potential to improve the therapeutic efficacy of both.
Collapse
Affiliation(s)
- Linglin Cheng
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, China
| | - Kailun He
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ye Kang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tianye Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Chunting Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yi Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Wanlu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yongye Huang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
19
|
He T, Lin X, Su A, Zhang Y, Xing Z, Mi L, Wei T, Li Z, Wu W. Mitochondrial dysfunction-targeting therapeutics of natural products in Parkinson's disease. Front Pharmacol 2023; 14:1117337. [PMID: 37234707 PMCID: PMC10206024 DOI: 10.3389/fphar.2023.1117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Parkinson's disease (PD), the second most common neurodegenerative disease worldwide, often occurs in middle-aged and elderly individuals. The pathogenesis of PD is complex and includes mitochondrial dysfunction, and oxidative stress. Recently, natural products with multiple structures and their bioactive components have become one of the most important resources for small molecule PD drug research targeting mitochondrial dysfunction. Multiple lines of studies have proven that natural products display ameliorative benefits in PD treatment by regulating mitochondrial dysfunction. Therefore, a comprehensive search of recent published articles between 2012 and 2022 in PubMed, Web of Science, Elesvier, Wliey and Springer was carried out, focusing on original publications related to natural products against PD by restoring mitochondrial dysfunction. This paper presented the mechanisms of various kinds of natural products on PD-related mitochondrial dysfunction regulation and provided evidence that natural products are promising to be developed as drugs for PD therapeutics.
Collapse
|
20
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
21
|
Gahtori R, Tripathi AH, Kumari A, Negi N, Paliwal A, Tripathi P, Joshi P, Rai RC, Upadhyay SK. Anticancer plant-derivatives: deciphering their oncopreventive and therapeutic potential in molecular terms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
Abstract
Background
Over the years, phytomedicines have been widely used as natural modalities for the treatment and prevention of various diseases by different ethnic groups across the globe. Although, 25% of drugs in the USA contain at least one plant-derived therapeutic compound, currently there is a paucity of plant-derived active medicinal ingredients in the pharmaceutical industry. Scientific evidence-based translation of plant-derived ethnomedicines for their clinical application is an urgent need. The anticancer and associated properties (antioxidative, anti-inflammatory, pro-apoptotic and epithelial-mesenchymal transition (EMT) inhibition) of various plant extracts and phytochemicals have been elucidated earlier. Several of the plant derivatives are already in use under prophylactic/therapeutic settings against cancer and many are being investigated under different phases of clinical trials.
Main body
The purpose of this study is to systematically comprehend the progress made in the area of prophylactic and therapeutic potential of the anticancerous plant derivatives. Besides, we aim to understand their anticancer potential in terms of specific sub-phenomena, such as anti-oxidative, anti-inflammatory, pro-apoptotic and inhibition of EMT, with an insight of the molecules/pathways associated with them. The study also provides details of classes of anticancer compounds, their plant source(s) and the molecular pathway(s) targeted by them. In addition to the antioxidative and antiproliferative potentials of anticancer plant derivatives, this study emphasizes on their EMT-inhibition potential and other ‘anticancer related’ properties. The EMT is highlighted as a phenomenon of choice for targeting cancer due to its role in the induction of metastasis and drug resistance. Different phytochemicals in pre-clinical or clinical trials, with promising chemopreventive/anticancer activities have been enlisted and the plant compounds showing synergistic anticancer activity in combination with the existing drugs have been discussed. The review also unravels the need of carrying out pan-signalome studies for identifying the cardinal pathways modulated by phytomedicine(s), as in many cases, the molecular pathway(s) has/have been randomly studied.
Conclusion
This review systematically compiles the studies regarding the impact of various plant derivatives in different cancers and oncogenic processes, as tested in diverse experimental model systems. Availability of more comprehensive information on anticancer phyto-constituents, their relative abundance in crude drugs, pathways/molecules targeted by phytomedicines, their long-term toxicity data and information regarding their safe use under the combinatorial settings, would open greater avenues of their utilization in future against this dreaded disease.
Graphical Abstract
Collapse
|
22
|
Chimento A, D’Amico M, De Luca A, Conforti FL, Pezzi V, De Amicis F. Resveratrol, Epigallocatechin Gallate and Curcumin for Cancer Therapy: Challenges from Their Pro-Apoptotic Properties. Life (Basel) 2023; 13:life13020261. [PMID: 36836619 PMCID: PMC9962739 DOI: 10.3390/life13020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Plant-derived bioactive compounds are gaining wide attention for their multiple health-promoting activities and in particular for their anti-cancer properties. Several studies have highlighted how they can prevent cancer initiation and progression, improve the effectiveness of chemotherapy, and, in some cases, limit some of the side effects of chemotherapy agents. In this paper, we provide an update of the literature on the anti-cancer effects of three extensively studied plant-derived compounds, namely resveratrol, epigallocatechin gallate, and curcumin, with a special focus on the anti-cancer molecular mechanisms inducing apoptosis in the major types of cancers globally.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-0984-496204
| |
Collapse
|
23
|
Bai X, Bian Z, Zhang M. Targeting the Nrf2 signaling pathway using phytochemical ingredients: A novel therapeutic road map to combat neurodegenerative diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154582. [PMID: 36610130 DOI: 10.1016/j.phymed.2022.154582] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a classical nuclear transcription factor that regulates the system's anti-oxidative stress response. The activation of Nrf2 induces the expression of antioxidant proteins and improves the system's anti-oxidative stress ability. Accumulating evidence suggests that Nrf2-centered signaling pathways may be a key pharmacological target for the treatment of neurodegenerative diseases (NDDs). However, phytochemicals as new therapeutic agents against NDDs have not been clearly delineated. PURPOSE To review the therapeutic effects of phytochemical ingredients on NDDs by activating Nrf2 and reducing oxidative stress injury. METHODS A comprehensive search of published articles was performed using various literature databases including PubMed, Google Scholar, and China National Knowledge Infrastructure. The search terms included "Nrf2", "phytochemical ingredients", "natural bioactive agents", "neurodegenerative diseases", "Antioxidant", "Alzheimer's disease", "Parkinson's disease", "Huntington's disease", "amyotrophic lateral sclerosis" "multiple sclerosis", "toxicity", and combinations of these keywords. A total of 769 preclinical studies were retrieved until August 2022, and we included 39 of these articless on phytochemistry, pharmacology, toxicology and other fields. RESULTS Numerous in vivo and in vitro studies showed that phytochemical ingredients could act as an Nrf2 activator in the treatment of NDDs through the antioxidant defense mechanism. These phytochemical ingredients, such as salidroside, naringenin, resveratrol, sesaminol, ellagic acid, ginsenoside Re, tanshinone I, sulforaphane, curcumin, naringin, tetramethylpyrazine, withametelin, magnolol, piperine, and myricetin, had the potential to improve Nrf2 signaling, thereby combatting NDDs. CONCLUSION As Nrf2 activators, phytochemical ingredients may provide a novel potential strategy for the treatment of NDDs. Here, we reviewed the interaction between phytochemical ingredients, Nrf2, and its antioxidant damaging pathway in NDDs and explored the advantages of phytochemical ingredients in anti-oxidative stress, which provides a reliable basis for improving the treatment of NDDs. However, further clinical trials are needed to determine the safety and efficacy of Nrf2 activators for NDDs.
Collapse
Affiliation(s)
- Xue Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Zhigang Bian
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China
| | - Meng Zhang
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, 110004, Shenyang, Liaoning, PR China.
| |
Collapse
|
24
|
Alpha Ketoglutarate Downregulates the Neutral Endopeptidase and Enhances the Growth Inhibitory Activity of Thiorphan in Highly Aggressive Osteosarcoma Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010097. [PMID: 36615293 PMCID: PMC9821816 DOI: 10.3390/molecules28010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Since natural substances are widely explored as epigenetic modulators of gene expression and epigenetic abnormalities are important causes of cancerogenesis, factors with pro-tumor activities subjected to epigenetic control, e.g., neutral endopeptidase (NEP, neprilysin), are promising anticancer targets for potential therapies acting via epigenetic regulation of gene expression. Alpha-ketoglutarate (AKG) is a naturally occurring co-substrate for enzymes involved in histone and DNA demethylation with suggested anti-cancer activity. Hence, we investigated a potential effect of AKG on the NEP expression in cells derived from various cancers (cervical, colon, osteosarcoma) and normal epithelial cells and osteoblasts. Moreover, the overall methylation status of histone H3 was explored to establish the molecular target of AKG activity. Additionally, it was investigated whether AKG in combination with thiorphan (NEP specific inhibitor) exhibited enhanced anticancer activity. The results revealed that AKG downregulated the expression of NEP at the protein level only in highly aggressive osteosarcoma HOS cells (flow cytometry and fluorometric assays), and this protease was found to be involved in AKG-induced growth inhibition in osteosarcoma cells (siRNA NEP silencing, BrdU assay, flow cytometry). Unexpectedly, AKG-induced hypermethylation of H3K27 in HOS cells, which was partially dependent on EZH2 activity. However, this effect was not implicated in the AKG-induced NEP downregulation (flow cytometry). Finally, the combined treatment with AKG and thiorphan was shown to significantly enhance the growth inhibitory potential of each one towards HOS cells (BrdU assay). These preliminary studies have shown for the first time that the downregulation of NEP expression is a promising target in therapies of NEP-implicating HOS cells. Moreover, this therapeutic goal can be achieved via AKG-induced downregulation of NEP and synergistic activity of AKG with thiorphan, i.e., a NEP specific inhibitor. Furthermore, this study has reported for the first time that exogenous AKG can influence the activity of histone methyltransferase, EZH2. However, this issue needs further investigation to elucidate the mechanisms of this phenomenon.
Collapse
|
25
|
Eugenol Induces Apoptosis in Tongue Squamous Carcinoma Cells by Mediating the Expression of Bcl-2 Family. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010022. [PMID: 36675971 PMCID: PMC9861585 DOI: 10.3390/life13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Head and neck squamous cell carcinoma is highly aggressive type of cancer for which the available treatment often causes patients severe side effects. Eugenol (Eug) is the major active constituent of clove essential oil and is known to possess antitumor properties. The present study aimed to assess the in vitro cytotoxicity of eugenol in SCC-4, tongue squamous carcinoma cells, and also in HGF, human gingival fibroblasts. Both cell lines were treated with five concentrations of Eug (0.1-1 mM) for 72 h. Cellular viability was assessed, followed by cellular morphological evaluation and by staining of the nuclei and cytoskeleton. RT-PCR was conducted in order to find the effect eugenol had on the expression on Bad, Bax, and Bcl-2 genes. Eugenol induced a dose-dependent decrease in viability in both cell lines, with the SCC-4 cells being significantly more affected. HGF cells detached from the plate at the highest concentrations used, while SCC-4 cells changed their morphology in a dose-dependent manner, with rounding, floating cells, and confluency loss being observed. Apoptotic-like signs such as chromatin and actin filaments condensation were clearly seen in SCC-4 cells, while RT-PCR revealed a significantly increased expression of pro-apoptotic genes Bax and Bad. Therefore, eugenol exerts its cytotoxic effect in tongue squamous cell carcinoma through inducing apoptosis.
Collapse
|
26
|
Flavonoids' Dual Benefits in Gastrointestinal Cancer and Diabetes: A Potential Treatment on the Horizon? Cancers (Basel) 2022; 14:cancers14246073. [PMID: 36551558 PMCID: PMC9776408 DOI: 10.3390/cancers14246073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Diabetes and gastrointestinal cancers (GI) are global health conditions with a massive burden on patients' lives worldwide. The development of both conditions is influenced by several factors, such as diet, genetics, environment, and infection, which shows a potential link between them. Flavonoids are naturally occurring phenolic compounds present in fruits and vegetables. Once ingested, unabsorbed flavonoids reaching the colon undergo enzymatic modification by the gut microbiome to facilitate absorption and produce ring fission products. The metabolized flavonoids exert antidiabetic and anti-GI cancer properties, targeting major impaired pathways such as apoptosis and cellular proliferation in both conditions, suggesting the potentially dual effects of flavonoids on diabetes and GI cancers. This review summarizes the current knowledge on the impact of flavonoids on diabetes and GI cancers in four significant pathways. It also addresses the synergistic effects of selected flavonoids on both conditions. While this is an intriguing approach, more studies are required to better understand the mechanism of how flavonoids can influence the same impaired pathways with different outcomes depending on the disease.
Collapse
|
27
|
Singh Tuli H, Kumar A, Ramniwas S, Coudhary R, Aggarwal D, Kumar M, Sharma U, Chaturvedi Parashar N, Haque S, Sak K. Ferulic Acid: A Natural Phenol That Inhibits Neoplastic Events through Modulation of Oncogenic Signaling. Molecules 2022; 27:molecules27217653. [PMID: 36364478 PMCID: PMC9654319 DOI: 10.3390/molecules27217653] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Despite the immense therapeutic advances in the field of health sciences, cancer is still to be found among the global leading causes of morbidity and mortality. Ethnomedicinally, natural bioactive compounds isolated from various plant sources have been used for the treatment of several cancer types and have gained notable attention. Ferulic acid, a natural compound derived from various seeds, nuts, leaves, and fruits, exhibits a variety of pharmacological effects in cancer, including its proapoptotic, cell-cycle-arresting, anti-metastatic, and anti-inflammatory activities. This review study presents a thorough overview of the molecular targets and cellular signaling pathways modulated by ferulic acid in diverse malignancies, showing high potential for this phenolic acid to be developed as a candidate agent for novel anticancer therapeutics. In addition, current investigations to develop promising synergistic formulations are also discussed.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Ajay Kumar
- Punjab Biotechnology Incubator (PBTI), Phase VIII, Mohali 160071, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali 140413, India
| | - Renuka Coudhary
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur-Ambala 134007, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda 151001, India
| | - Nidarshana Chaturvedi Parashar
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133207, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Katrin Sak
- NGO Praeventio, 50407 Tartu, Estonia
- Correspondence:
| |
Collapse
|
28
|
Yao J, Ma C, Feng K, Tan G, Wen Q. Focusing on the Role of Natural Products in Overcoming Cancer Drug Resistance: An Autophagy-Based Perspective. Biomolecules 2022; 12:1565. [PMID: 36358919 PMCID: PMC9687214 DOI: 10.3390/biom12111565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 10/15/2023] Open
Abstract
Autophagy is a critical cellular adaptive response in tumor formation. Nutritional deficiency and hypoxia exacerbate autophagic flux in established malignancies, promoting tumor cell proliferation, migration, metastasis, and resistance to therapeutic interventions. Pro-survival autophagy inhibition may be a promising treatment option for advanced cancer. Furthermore, excessive or persistent autophagy is cytotoxic, resulting in tumor cell death. Targeted autophagy activation has also shown significant promise in the fight against tumor drug resistance. Several research groups have examined the ability of natural products (NPs) such as alkaloids, terpenoids, polyphenols, and anthraquinones to serve as autophagy inhibitors or activators. The data support the capacity of NPs that promote lethal autophagy or inhibit pro-survival autophagy from being employed against tumor drug resistance. This paper discusses the potential applications of NPs that regulate autophagy in the fight against tumor drug resistance, some limitations of the current studies, and future research needs and priorities.
Collapse
Affiliation(s)
- Jiaqi Yao
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Kaixuan Feng
- Department of Anesthesiology, The Affiliated Xinhua Hospital of Dalian University, Dalian 116021, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Qingping Wen
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|