1
|
Lin H, Yang Y, Hsu YC, Zhang J, Welton C, Afolabi I, Loo M, Zhou HC. Metal-Organic Frameworks for Water Harvesting and Concurrent Carbon Capture: A Review for Hygroscopic Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209073. [PMID: 36693232 DOI: 10.1002/adma.202209073] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/05/2023] [Indexed: 06/17/2023]
Abstract
As water scarcity becomes a pending global issue, hygroscopic materials prove a significant solution. Thus, there is a good cause following the structure-performance relationship to review the recent development of hygroscopic materials and provide inspirational insight into creative materials. Herein, traditional hygroscopic materials, crystalline frameworks, polymers, and composite materials are reviewed. The similarity in working conditions of water harvesting and carbon capture makes simultaneously addressing water shortages and reduction of greenhouse effects possible. Concurrent water harvesting and carbon capture is likely to become a future challenge. Therefore, an emphasis is laid on metal-organic frameworks (MOFs) for their excellent performance in water and CO2 adsorption, and representative role of micro- and mesoporous materials. Herein, the water adsorption mechanisms of MOFs are summarized, followed by a review of MOF's water stability, with a highlight on the emerging machine learning (ML) technique to predict MOF water stability and water uptake. Recent advances in the mechanistic elaboration of moisture's effects on CO2 adsorption are reviewed. This review summarizes recent advances in water-harvesting porous materials with special attention on MOFs and expects to direct researchers' attention into the topic of concurrent water harvesting and carbon capture as a future challenge.
Collapse
Affiliation(s)
- Hengyu Lin
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yu-Chuan Hsu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Claire Welton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Ibukun Afolabi
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Marshal Loo
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
2
|
Škrjanc A, Opresnik M, Gabrijelčič M, Šuligoj A, Mali G, Zabukovec Logar N. Impact of Dye Encapsulation in ZIF-8 on CO 2, Water, and Wet CO 2 Sorption. Molecules 2023; 28:7056. [PMID: 37894537 PMCID: PMC10609182 DOI: 10.3390/molecules28207056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The fast adsorption kinetics of zeolitic imidazolate frameworks (ZIFs) enable a wide range of sorption applications. The most commonly used framework, ZIF-8, is relatively non-polar. Increasing the polarity of ZIF-8 through the encapsulation of different polar species shows promise for enhancing the sorption performance for pure CO2. Recently, the outlook has re-focused on gas mixtures, mostly in the context of post-combustion CO2 capture from wet flue gasses. While water is known to sometimes have a synergistic effect on CO2 sorption, we still face the potential problem of preferential water vapor adsorption. Herein, we report the preparation of three ZIF-8/organic dye (OD) composites using Congo red, Xylenol orange, and Bromothymol blue, and their impact on the sorption properties for CO2, water, and a model wet CO2 system at 50% RH. The results show that the preparation of OD composites can be a promising way to optimize adsorbents for single gasses, but further work is needed to find superior ZIF@OD for the selective sorption of CO2 from wet gas mixtures.
Collapse
Affiliation(s)
- Aljaž Škrjanc
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Postgraduate School, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Mojca Opresnik
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
| | - Matej Gabrijelčič
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000 Ljubljana, Slovenia
| | - Andraž Šuligoj
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Faculty of Chemistry and Chemical Technology, University of Ljubjana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Gregor Mali
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Postgraduate School, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Nataša Zabukovec Logar
- Department of Inorganic Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia; (A.Š.); (M.O.); (M.G.); (A.Š.)
- Postgraduate School, University of Nova Gorica, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| |
Collapse
|
3
|
Li Y, Bai Y, Wang Z, Gong Q, Li M, Bo Y, Xu H, Jiang G, Chi K. Exquisitely Constructing a Robust MOF with Dual Pore Sizes for Efficient CO 2 Capture. Molecules 2023; 28:6276. [PMID: 37687104 PMCID: PMC10488667 DOI: 10.3390/molecules28176276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Developing metal-organic framework (MOF) adsorbents with excellent performance and robust stability is of critical importance to reduce CO2 emissions yet challenging. Herein, a robust ultra-microporous MOF, Cu(bpfb)(bdc), with mixed ligands of N, N'-(1,4-phenylene)diisonicotinamide (bpfb), and 1,4-dicarboxybenzene (bdc) was delicately constructed. Structurally, this material possesses double-interpenetrated frameworks formed by two staggered, independent frameworks, resulting in two types of narrow ultra-micropores of 3.4 × 5.0 and 4.2 × 12.8 Å2, respectively. The above structural properties make its highly selective separation at 273~298 K with a CO2 capacity of 71.0~86.2 mg/g. Its adsorption heat over CO2 and IAST selectivity were calculated to be 27 kJ/mol and 52.2, respectively. Remarkably, cyclic breakthrough experiments corroborate its impressive performance in CO2/N2 separation in not only dry but also 75% RH humid conditions. Molecular simulation reveals that C-H···OCO2 in the pores plays a pivotal role in the high selectivity of CO2 adsorption. These results point out the huge potential application of this material for CO2/N2 separation.
Collapse
Affiliation(s)
- Yanxi Li
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Yuhua Bai
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Zhuozheng Wang
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Qihan Gong
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Mengchen Li
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Yawen Bo
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Hua Xu
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| | - Guiyuan Jiang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Kebin Chi
- CNPC Petrochemical Research Institute Company Limited, Beijing 102206, China (M.L.)
| |
Collapse
|
4
|
Nabil SK, Roy S, Algozeeb WA, Al-Attas T, Bari MAA, Zeraati AS, Kannimuthu K, Demingos PG, Rao A, Tran TN, Wu X, Bollini P, Lin H, Singh CV, Tour JM, Ajayan PM, Kibria MG. Bifunctional Gas Diffusion Electrode Enables In Situ Separation and Conversion of CO 2 to Ethylene from Dilute Stream. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300389. [PMID: 36943940 DOI: 10.1002/adma.202300389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Indexed: 06/16/2023]
Abstract
The requirement of concentrated carbon dioxide (CO2 ) feedstock significantly limits the economic feasibility of electrochemical CO2 reduction (eCO2 R) which often involves multiple intermediate processes, including CO2 capture, energy-intensive regeneration, compression, and transportation. Herein, a bifunctional gas diffusion electrode (BGDE) for separation and eCO2 R from a low-concentration CO2 stream is reported. The BGDE is demonstrated for the selective production of ethylene (C2 H4 ) by combining high-density-polyethylene-derived porous carbon (HPC) as a physisorbent with polycrystalline copper as a conversion catalyst. The BGDE shows substantial tolerance to 10 vol% CO2 exhibiting a Faradaic efficiency of ≈45% toward C2 H4 at a current density of 80 mA cm-2 , outperforming previous reports that utilized such partial pressure (PCO2 = 0.1 atm and above) and unaltered polycrystalline copper. Molecular dynamics simulation and mixed gas permeability assessment reveal that such selective performance is ensured by high CO2 uptake of the microporous HPC as well as continuous desorption owing to the molecular diffusion and concentration gradient created by the binary flow of CO2 and nitrogen (CO2 |N2 ) within the sorbent boundary. Based on detailed techno-economic analysis, it is concluded that this in situ process can be economically compelling by precluding the C2 H4 production cost associated with the energy-intensive intermediate steps of the conventional decoupled process.
Collapse
Affiliation(s)
- Shariful Kibria Nabil
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Wala Ali Algozeeb
- Department of Chemistry, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Tareq Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Md Abdullah Al Bari
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Ali Shayesteh Zeraati
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Karthick Kannimuthu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| | - Pedro Guerra Demingos
- Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, Ontario, M5S 1A1, Canada
| | - Adwitiya Rao
- Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, Ontario, M5S 1A1, Canada
| | - Thien N Tran
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Xiaowei Wu
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, TX, 77204, USA
| | - Praveen Bollini
- William A. Brookshire Department of Chemical & Biomolecular Engineering, University of Houston, 4226 Martin Luther King Boulevard, Houston, TX, 77204, USA
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, 27 King's College Cir, Toronto, Ontario, M5S 1A1, Canada
| | - James M Tour
- Department of Chemistry, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main St., Houston, TX, 77030, USA
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
5
|
Wang J, Chen Y, Zhao Y, Yao C, Liu Y, Liu X. CO 2 Capture Membrane for Long-Cycle Lithium-Air Battery. Molecules 2023; 28:molecules28052024. [PMID: 36903270 PMCID: PMC10003791 DOI: 10.3390/molecules28052024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Lithium-air batteries (LABs) have attracted extensive attention due to their ultra-high energy density. At present, most LABs are operated in pure oxygen (O2) since carbon dioxide (CO2) under ambient air will participate in the battery reaction and generate an irreversible by-product of lithium carbonate (Li2CO3), which will seriously affect the performance of the battery. Here, to solve this problem, we propose to prepare a CO2 capture membrane (CCM) by loading activated carbon encapsulated with lithium hydroxide (LiOH@AC) onto activated carbon fiber felt (ACFF). The effect of the LiOH@AC loading amount on ACFF has been carefully investigated, and CCM has an ultra-high CO2 adsorption performance (137 cm3 g-1) and excellent O2 transmission performance by loading 80 wt% LiOH@AC onto ACFF. The optimized CCM is further applied as a paster on the outside of the LAB. As a result, the specific capacity performance of LAB displays a sharp increase from 27,948 to 36,252 mAh g-1, and the cycle time is extended from 220 h to 310 h operating in a 4% CO2 concentration environment. The concept of carbon capture paster opens a simple and direct way for LABs operating in the atmosphere.
Collapse
|
6
|
Yu Q, Bai J, Huang J, Demir M, Farghaly AA, Aghamohammadi P, Hu X, Wang L. One-Pot Synthesis of Melamine Formaldehyde Resin-Derived N-Doped Porous Carbon for CO 2 Capture Application. Molecules 2023; 28:molecules28041772. [PMID: 36838757 PMCID: PMC9958949 DOI: 10.3390/molecules28041772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The design and synthesis of porous carbons for CO2 adsorption have attracted tremendous interest owing to the ever-soaring concerns regarding climate change and global warming. Herein, for the first time, nitrogen-rich porous carbon was prepared with chemical activation (KOH) of commercial melamine formaldehyde resin (MF) in a single step. It has been shown that the porosity parameters of the as-prepared carbons were successfully tuned by controlling the activating temperature and adjusting the amount of KOH. Thus, as-prepared N-rich porous carbon shows a large surface area of 1658 m2/g and a high N content of 16.07 wt%. Benefiting from the unique physical and textural features, the optimal sample depicted a CO2 uptake of up to 4.95 and 3.30 mmol/g at 0 and 25 °C under 1 bar of pressure. More importantly, as-prepared adsorbents show great CO2 selectivity over N2 and outstanding recyclability, which was prominently important for CO2 capture from the flue gases in practical application. An in-depth analysis illustrated that the synergetic effect of textural properties and surface nitrogen decoration mainly determined the CO2 capture performance. However, the textural properties of carbons play a more important role than surface functionalities in deciding CO2 uptake. In view of cost-effective synthesis, outstanding textural activity, and the high adsorption capacity together with good selectivity, this advanced approach becomes valid and convenient in fabricating a unique highly efficient N-rich carbon adsorbent for CO2 uptake and separation from flue gases.
Collapse
Affiliation(s)
- Qiyun Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiali Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiamei Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Muslum Demir
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
- TUBITAK Marmara Research Center, Material Institute, Gebze 41470, Turkey
| | - Ahmed A. Farghaly
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Parya Aghamohammadi
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (X.H.); (L.W.); Tel.: +86-151-0579-0257 (X.H.)
| | - Linlin Wang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
- Correspondence: (X.H.); (L.W.); Tel.: +86-151-0579-0257 (X.H.)
| |
Collapse
|
7
|
Yu Q, Bai J, Huang J, Demir M, Altay BN, Hu X, Wang L. One-Pot Synthesis of N-Rich Porous Carbon for Efficient CO 2 Adsorption Performance. Molecules 2022; 27:6816. [PMID: 36296408 PMCID: PMC9610260 DOI: 10.3390/molecules27206816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/24/2022] Open
Abstract
N-enriched porous carbons have played an important part in CO2 adsorption application thanks to their abundant porosity, high stability and tailorable surface properties while still suffering from a non-efficient and high-cost synthesis method. Herein, a series of N-doped porous carbons were prepared by a facile one-pot KOH activating strategy from commercial urea formaldehyde resin (UF). The textural properties and nitrogen content of the N-doped carbons were carefully controlled by the activating temperature and KOH/UF mass ratios. As-prepared N-doped carbons show 3D block-shaped morphology, the BET surface area of up to 980 m2/g together with a pore volume of 0.52 cm3/g and N content of 23.51 wt%. The optimal adsorbent (UFK-600-0.2) presents a high CO2 uptake capacity of 4.03 mmol/g at 0 °C and 1 bar. Moreover, as-prepared N-doped carbon adsorbents show moderate isosteric heat of adsorption (43-53 kJ/mol), acceptable ideal adsorption solution theory (IAST) selectivity of 35 and outstanding recycling performance. It has been pointed out that while the CO2 uptake was mostly dependent on the textural feature, the N content of carbon also plays a critical role to define the CO2 adsorption performance. The present study delivers favorable N-doped carbon for CO2 uptake and provides a promising strategy for the design and synthesis of the carbon adsorbents.
Collapse
Affiliation(s)
- Qiyun Yu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiali Bai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Jiamei Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Muslum Demir
- Department of Chemical Engineering, Osmaniye Korkut Ata University, Osmaniye 80000, Turkey
| | - Bilge Nazli Altay
- College of Engineering Technology, Print and Graphic Media Science, Rochester Institute of Technology, Rochester, NY 14623, USA
- Institute of Pure and Applied Sciences, Marmara University, Istanbul 34722, Turkey
| | - Xin Hu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| | - Linlin Wang
- Key Laboratory of Urban Rail Transit Intelligent Operation and Maintenance Technology and Equipment of Zhejiang Province, College of Engineering, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|