1
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé Patiño G, Sierra Martinez J, Berrio Soto R, de Almeida Rodolpho JM, de Godoy KF, de Freitas Aníbal F, de Lima Fragelli BD. Synergistic Antifungal Effect and In Vivo Toxicity of a Monoterpene Isoespintanol Obtained from Oxandra xylopioides Diels. Molecules 2024; 29:4417. [PMID: 39339412 PMCID: PMC11433975 DOI: 10.3390/molecules29184417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Candida sp. infections are a threat to global health, with high morbidity and mortality rates due to drug resistance, especially in immunocompromised people. For this reason, the search for new alternatives is urgent, and in recent years, a combined therapy with natural compounds has been proposed. Considering the biological potential of isoespintanol (ISO) and continuing its study, the objective of this research was to assess the effect of ISO in combination with the antifungals fluconazole (FLZ), amphotericin B (AFB) and caspofungin (CASP) against clinical isolates of C. tropicalis and to evaluate the cytotoxic effect of this compound in the acute phase (days 0 and 14) and chronic phase (days 0, 14, 28, 42, 56, 70 and 84) in female mice (Mus musculus) of the Balb/c lineage. The results show that ISO can potentiate the effect of FLZ, AFB and CASP, showing synergism with these antifungals. An evaluation of the mice via direct observation showed no behavioral changes or variations in weight during treatment; furthermore, an analysis of the cytokines IFN-γ and TNF in plasma, peritoneal cavity lavage (PCL) and bronchoalveolar lavage (BAL) indicated that there was no inflammation process. In addition, histopathological studies of the lungs, liver and kidneys showed no signs of toxicity caused by ISO. This was consistent with an analysis of oxaloacetic transaminases (GOT) and pyruvic transaminases (GPT), which remained in the standard range. These findings indicate that ISO does not have a cytotoxic effect at the doses evaluated, placing it as a monoterpene of interest in the search for compounds with pharmacological potential.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Jesus Sierra Martinez
- Department of Genetics and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Ricardo Berrio Soto
- Biology Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Joice Margareth de Almeida Rodolpho
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Krissia Franco de Godoy
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Fernanda de Freitas Aníbal
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Bruna Dias de Lima Fragelli
- Functional Materials Development Center, Interdisciplinary Laboratory of Electrochemistry and Ceramics, Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
2
|
Silva-Rodrigues G, de Castro IM, Borges PHG, Suzukawa HT, de Souza JM, Bartolomeu-Gonçalves G, Pelisson M, Medeiros CIS, Bispo MDLF, de Almeida RSC, Ishida K, Tavares ER, Yamauchi LM, Yamada-Ogatta SF. Geraniol Potentiates the Effect of Fluconazole against Planktonic and Sessile Cells of Azole-Resistant Candida tropicalis: In Vitro and In Vivo Analyses. Pharmaceutics 2024; 16:1053. [PMID: 39204397 PMCID: PMC11360560 DOI: 10.3390/pharmaceutics16081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/04/2024] Open
Abstract
Candida tropicalis is regarded as an opportunistic pathogen, causing diseases ranging from superficial infections to life-threatening disseminated infections. The ability of this yeast to form biofilms and develop resistance to antifungals represents a significant therapeutic challenge. Herein, the effect of geraniol (GER), alone and combined with fluconazole (FLZ), was evaluated in the planktonic and sessile cells of azole-resistant C. tropicalis. GER showed a time-dependent fungicidal effect on the planktonic cells, impairing the cell membrane integrity. Additionally, GER inhibited the rhodamine 6G efflux, and the molecular docking analyzes supported the binding affinity of GER to the C. tropicalis Cdr1 protein. GER exhibited a synergism with FLZ against the planktonic and sessile cells, inhibiting the adhesion of the yeast cells and the viability of the 48-h biofilms formed on abiotic surfaces. C. tropicalis biofilms treated with GER, alone or combined with FLZ, displayed morphological and ultrastructural alterations, including a decrease in the stacking layers and the presence of wilted cells. Moreover, neither GER alone nor combined with FLZ caused toxicity, and both treatments prolonged the survival of the Galleria mellonella larvae infected with azole-resistant C. tropicalis. These findings indicate that the combination of GER and FLZ may be a promising strategy to control azole-resistant C. tropicalis infections.
Collapse
Affiliation(s)
- Gislaine Silva-Rodrigues
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Isabela Madeira de Castro
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Paulo Henrique Guilherme Borges
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Helena Tiemi Suzukawa
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Joyce Marinho de Souza
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Guilherme Bartolomeu-Gonçalves
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
| | - Marsileni Pelisson
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
| | | | - Marcelle de Lima Ferreira Bispo
- Synthesis of Medicinal Molecules Laboratory, Department of Chemistry, State University of Londrina, Londrina 86057-970, Brazil;
| | - Ricardo Sérgio Couto de Almeida
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
| | - Kelly Ishida
- Laboratory of Antifungal Chemotherapy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-900, Brazil;
| | - Eliandro Reis Tavares
- Department of Medicine, Pontifical Catholic University of Paraná, Campus Londrina, Londrina 86067-000, Brazil;
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| | - Lucy Megumi Yamauchi
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| | - Sueli Fumie Yamada-Ogatta
- Postgraduate Program in Microbiology, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil; (G.S.-R.); (I.M.d.C.); (P.H.G.B.); (H.T.S.); (L.M.Y.)
- Postgraduate Program in Clinical and Laboratory Pathophysiology, Department of Pathology, Clinical and Toxicological Analysis, State University of Londrina, Londrina 86038-350, Brazil
- Laboratory of Molecular Biology of Microorganisms, Department of Microbiology, State University of Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
3
|
Contreras-Martínez OI, Sierra-Quiroz D, Angulo-Ortíz A. Antibacterial and Antibiofilm Potential of Ethanolic Extracts of Duguetia vallicola (Annonaceae) against in-Hospital Isolates of Pseudomonas aeruginosa. PLANTS (BASEL, SWITZERLAND) 2024; 13:1412. [PMID: 38794482 PMCID: PMC11126144 DOI: 10.3390/plants13101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that is especially dominant in people with cystic fibrosis; the drug resistance expressed by this pathogen and its capacity for adaptation poses a significant challenge to its treatment and control, thereby increasing morbidity and mortality rates globally. In this sense, the search for new treatment alternatives is imminent today, with products of plant origin being an excellent alternative for use. The objective of this research was to evaluate the antibacterial and antibiofilm potential and to explore the possible effect of ethanolic extracts from the wood and bark of Duguetia vallicola on the cell membrane. Microdilution assays showed the inhibition of bacterial growth by more than 50%, with the lowest concentration (62.5 μg/mL) of both extracts evaluated. Furthermore, we report the ability of both extracts to inhibit mature biofilms, with inhibition percentages between 48.4% and 93.7%. Intracellular material leakage experiments (260/280 nm), extracellular pH measurements, and fluorescence microscopy with acridine orange (AO) and ethidium bromide (EB) showed cell membrane damage. This indicates that the antibacterial action of ethanolic extracts of D. vallicola is associated with damage to the integrity of the cell membrane and consequent death of these pathogens. These results serve as a reference for future studies in establishing the mechanisms of action of these extracts.
Collapse
Affiliation(s)
- Orfa Inés Contreras-Martínez
- Biology Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (O.I.C.-M.); (D.S.-Q.)
| | - Daniela Sierra-Quiroz
- Biology Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (O.I.C.-M.); (D.S.-Q.)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| |
Collapse
|
4
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé Patiño G, Rocha FV, Zanotti K, Fortaleza DB, Teixeira T, Sierra Martinez J. Cytotoxic Potential of the Monoterpene Isoespintanol against Human Tumor Cell Lines. Int J Mol Sci 2024; 25:4614. [PMID: 38731832 PMCID: PMC11083712 DOI: 10.3390/ijms25094614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
Cancer is a disease that encompasses multiple and different malignant conditions and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options and potential candidates that can be used as treatments or adjuvants to control this disease is urgent. Natural products, especially those obtained from plants, have played an important role as a source of specialized metabolites with recognized pharmacological properties against cancer, therefore, they are an excellent alternative to be used. The objective of this research was to evaluate the action of the monoterpene isoespintanol (ISO) against the human tumor cell lines MDA-MB-231, A549, DU145, A2780, A2780-cis and the non-tumor line MRC-5. Experiments with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescence with propidium iodide (PI), 4',6-diamidino-2-phenylindole dilactate (DAPI) and green plasma revealed the cytotoxicity of ISO against these cells; furthermore, morphological and chromogenic studies revealed the action of ISO on cell morphology and the inhibitory capacity on reproductive viability to form colonies in MDA-MB-231 cells. Likewise, 3D experiments validated the damage in these cells caused by this monoterpene. These results serve as a basis for progress in studies of the mechanisms of action of these compounds and the development of derivatives or synthetic analogues with a better antitumor profile.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia;
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia;
| | - Fillipe Vieira Rocha
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Karine Zanotti
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Dario Batista Fortaleza
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Tamara Teixeira
- Chemistry Department, Federal University of São Carlos, São Carlos 13565-905, Brazil; (F.V.R.); (K.Z.); (T.T.)
| | - Jesus Sierra Martinez
- Genetics and Evolution Department, Federal University of São Carlos, São Carlos 13565-905, Brazil
| |
Collapse
|
5
|
Aonofriesei F. Increased Absorption and Inhibitory Activity against Candida spp. of Imidazole Derivatives in Synergistic Association with a Surface Active Agent. Microorganisms 2023; 12:51. [PMID: 38257878 PMCID: PMC10819671 DOI: 10.3390/microorganisms12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
This paper's purpose was to evaluate the interaction between three imidazole derivatives, (2-methyl-1H-imidazol-1-yl)methanol (SAM3), 1,1'-methanediylbis(1H-benzimidazole (AM5) and (1H-benzo[d]imidazol-1-yl)methanol 1-hydroxymethylbenzimidazole (SAM5) on the one hand, and sodium dodecyl sulphate (SDS) on the other, as antifungal combinations against Candida spp. Inhibitory activity was assessed using the agar diffusion method and Minimal Inhibitory Concentration (MIC) and showed moderate inhibitory activity of single imidazole derivatives against Candida spp. The mean value of MIC ranged from 200 µg/mL (SAM3) to 312.5 µg/mL (SAM3), while for SDS the MIC was around 1000 µg/mL. When used in combination with SDS, the imidazole derivatives demonstrated an improvement in their antifungal activity. Their MIC decreased over five times for AM5 and over seven times for SAM3 and SAM5, respectively, and ranged from 26.56 µg/mL (SAM3) to 53.90 µg/mL (AM5). Most combinations displayed an additive effect while a clear synergistic effect was recorded in only a few cases. Thus, the FIC Index (FICI) with values between 0.311 and 0.375 showed a synergistic effect against Candida spp. when SDS was associated with SAM3 (three strains), SAM5 (two strains) and AM5 (one strain). The association of imidazole derivatives with SDS led to the increased release of cellular material as well as the intracellular influx of crystal violet (CV), which indicated an alteration of the membrane permeability of Candida spp. cells. This favored the synergistic effect via increasing the intracellular influx of imidazoles.
Collapse
Affiliation(s)
- Florin Aonofriesei
- Department of Natural Sciences, Faculty of Natural and Agricultural Sciences, "Ovidius" University of Constanța, 1 University Street, 900470 Constanța, Romania
| |
Collapse
|
6
|
Contreras-Martínez OI, Angulo-Ortíz A, Santafé-Patiño G, Aviña-Padilla K, Velasco-Pareja MC, Yasnot MF. Transcriptional Reprogramming of Candida tropicalis in Response to Isoespintanol Treatment. J Fungi (Basel) 2023; 9:1199. [PMID: 38132799 PMCID: PMC10744401 DOI: 10.3390/jof9121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
Candida tropicalis, an opportunistic pathogen, ranks among the primary culprits of invasive candidiasis, a condition notorious for its resistance to conventional antifungal drugs. The urgency to combat these drug-resistant infections has spurred the quest for novel therapeutic compounds, with a particular focus on those of natural origin. In this study, we set out to evaluate the impact of isoespintanol (ISO), a monoterpene derived from Oxandra xylopioides, on the transcriptome of C. tropicalis. Leveraging transcriptomics, our research aimed to unravel the intricate transcriptional changes induced by ISO within this pathogen. Our differential gene expression analysis unveiled 186 differentially expressed genes (DEGs) in response to ISO, with a striking 85% of these genes experiencing upregulation. These findings shed light on the multifaceted nature of ISO's influence on C. tropicalis, spanning a spectrum of physiological, structural, and metabolic adaptations. The upregulated DEGs predominantly pertained to crucial processes, including ergosterol biosynthesis, protein folding, response to DNA damage, cell wall integrity, mitochondrial activity modulation, and cellular responses to organic compounds. Simultaneously, 27 genes were observed to be repressed, affecting functions such as cytoplasmic translation, DNA damage checkpoints, membrane proteins, and metabolic pathways like trans-methylation, trans-sulfuration, and trans-propylamine. These results underscore the complexity of ISO's antifungal mechanism, suggesting that it targets multiple vital pathways within C. tropicalis. Such complexity potentially reduces the likelihood of the pathogen developing rapid resistance to ISO, making it an attractive candidate for further exploration as a therapeutic agent. In conclusion, our study provides a comprehensive overview of the transcriptional responses of C. tropicalis to ISO exposure. The identified molecular targets and pathways offer promising avenues for future research and the development of innovative antifungal therapies to combat infections caused by this pathogenic yeast.
Collapse
Affiliation(s)
| | - Alberto Angulo-Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Gilmar Santafé-Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia; (A.A.-O.); (G.S.-P.)
| | - Katia Aviña-Padilla
- Center for Research and Advanced Studies of the I.P.N. Unit Irapuato, Irapuato 36821, Mexico;
| | - María Camila Velasco-Pareja
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| | - María Fernanda Yasnot
- Bacteriology Department, Faculty of Health Sciences, University of Córdoba, Montería 230002, Colombia; (M.C.V.-P.); (M.F.Y.)
| |
Collapse
|
7
|
Zapata-Zapata C, Rojas-López M, García LT, Quintero W, Terrón MC, Luque D, Mesa-Arango AC. Lippia origanoides Essential Oil or Thymol in Combination with Fluconazole Produces Damage to Cells and Reverses the Azole-Resistant Phenotype of a Candida tropicalis Strain. J Fungi (Basel) 2023; 9:888. [PMID: 37754996 PMCID: PMC10532872 DOI: 10.3390/jof9090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Candida tropicalis is one of the most pathogenic species within the genus. Increased antifungal resistance has been reported, which is in part due to the organism's ability to form biofilms. In natural products derived from plants, such as essential oils (EOs) or their major components, there is significant potential to develop new antifungals or to both enhance the efficacy and reduce the toxicity of conventional antifungals. This study aimed to evaluate the effect of combining an EO of Lippia origanoides or thymol with fluconazole on an azole-resistant C. tropicalis strain. Synergism was observed in the combination of fluconazole with the EO and with thymol, and minimal inhibitory concentrations for fluconazole decreased at least 32-fold. As a consequence of the synergistic interactions, mitochondrial membrane potential was reduced, and mitochondrial superoxide production increased. Alteration in nuclear morphology, cell surface, and ultrastructure was also observed. In conclusion, the synergistic interaction between L. origanoides EO or thymol with fluconazole reverted the azole-resistant C. tropicalis phenotype. These findings suggest that L. origanoides EO or thymol alone, or in combination with fluconazole, have the potential for development as antifungal therapies for this yeast, including resistant strains.
Collapse
Affiliation(s)
- Carolina Zapata-Zapata
- Academic Group of Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
| | - Mauricio Rojas-López
- Group of Cellular Immunology and Immunogenetics (GICIG), Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
- Flow Cytometry Unit, University of Antioquia, Medellín 050010, Colombia
| | - Liliana T. García
- Postgraduate Department of Infectious Disease, University of Santander, Bucaramanga 680006, Colombia; (L.T.G.); (W.Q.)
| | - Wendy Quintero
- Postgraduate Department of Infectious Disease, University of Santander, Bucaramanga 680006, Colombia; (L.T.G.); (W.Q.)
| | - María C. Terrón
- Electron Microscopy Unit, Scientific-Technical Central Units, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.C.T.); (D.L.)
| | - Daniel Luque
- Electron Microscopy Unit, Scientific-Technical Central Units, Institute of Health Carlos III (ISCIII), 28220 Madrid, Spain; (M.C.T.); (D.L.)
| | - Ana C. Mesa-Arango
- Academic Group of Epidemiology, Faculty of Medicine, University of Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
8
|
Contreras Martínez OI, Angulo Ortíz A, Santafé Patiño G, Peñata-Taborda A, Berrio Soto R. Isoespintanol Antifungal Activity Involves Mitochondrial Dysfunction, Inhibition of Biofilm Formation, and Damage to Cell Wall Integrity in Candida tropicalis. Int J Mol Sci 2023; 24:10187. [PMID: 37373346 DOI: 10.3390/ijms241210187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The growing increase in infections caused by C. tropicalis, associated with its drug resistance and consequent high mortality, especially in immunosuppressed people, today generates a serious global public health problem. In the search for new potential drug candidates that can be used as treatments or adjuvants in the control of infections by these pathogenic yeasts, the objective of this research was to evaluate the action of isoespintanol (ISO) against the formation of fungal biofilms, the mitochondrial membrane potential (ΔΨm), and its effect on the integrity of the cell wall. We report the ability of ISO to inhibit the formation of biofilms by up to 89.35%, in all cases higher than the values expressed by amphotericin B (AFB). Flow cytometric experiments using rhodamine 123 (Rh123) showed the ability of ISO to cause mitochondrial dysfunction in these cells. Likewise, experiments using calcofluor white (CFW) and analyzed by flow cytometry showed the ability of ISO to affect the integrity of the cell wall by stimulating chitin synthesis; these changes in the integrity of the wall were also observed through transmission electron microscopy (TEM). These mechanisms are involved in the antifungal action of this monoterpene.
Collapse
Affiliation(s)
| | - Alberto Angulo Ortíz
- Chemistry Department, Faculty of Basic Sciences, Universidad de Córdoba, Montería 230002, Colombia
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, Universidad de Córdoba, Montería 230002, Colombia
| | - Ana Peñata-Taborda
- Biomedical and Molecular Biology Research Group, Universidad del Sinú E.B.Z., Montería 230001, Colombia
| | - Ricardo Berrio Soto
- Biology Department, Faculty of Basic Sciences, Universidad de Córdoba, Montería 230002, Colombia
| |
Collapse
|
9
|
Sasidharan S, Nishanth KS, Nair HJ. A semi purified hydroalcoholic fraction from Caesalpinia bonduc seeds causes ergosterol biosynthesis inhibition in Candida albicans resulting in cell membrane damage. Front Pharmacol 2023; 14:1189241. [PMID: 37377930 PMCID: PMC10291067 DOI: 10.3389/fphar.2023.1189241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Candida species are currently developing resistance to prevailing commercially available drugs, which raises an instantaneous need to discover novel antifungals. To cope with this shocking situation, phytochemicals are the richest, safest, and most potent source of excellent antimicrobials with broad-spectrum activity. The aim of the current study is to explore the anticandidal potential of the various fractions purified from the hydroalcoholic extract of C. bonduc seed. Out of five fractions purified from the hydroalcoholic extract, fraction 3 (Fr. 3) recorded the best activity against C. albicans (8 μg/mL) and thus this species was chosen for further mechanism of action studies. The phytochemical examination reveals that Fr. 3 was found to contain steroids and triterpenoids. This was further supported by LC-QTOF-MS and GCMS analyses. Our findings show that Fr. 3 targets the ergosterol biosynthesis pathway in C. albicans by inhibiting the lanosterol 14-α demethylase enzyme and downregulating expression of its related gene ERG11. Molecular docking outcomes disclosed favorable structural dynamics of the compounds, implying that the compounds present in Fr. 3 would be able to successfully bind to the lanosterol 14-α demethylase, as evidenced by the docked compounds' strong interaction with the target enzyme's amino acid residues. Considering virulence factors, the Fr. 3 recorded significant antibiofilm activity as well as germ-tube reduction potential. Furthermore, Fr. 3 enhances the production of intracellular reactive oxygen species (ROS). This suggests that the antifungal activity of Fr. 3 was associated with membrane damage and the induction of ROS production, resulting in cell death. Fluorescence microscopic analysis of PI stained Candida further showed changes in the plasma membrane permeability, which causes severe loss of intracellular material and osmotic balance. This was demonstrated by the potassium ion leakage and release of genetic materials. Finally, the erythrocyte lysis assay confirmed the low cytotoxicity of Fr. 3. Both in silico and in vitro results suggest that Fr. 3 has the potential to propel forward novel antifungal drug discovery programmes.
Collapse
Affiliation(s)
- Shan Sasidharan
- 1Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| | - Kumar S. Nishanth
- 1Department of R&D, Pankajakasthuri Herbal Research Foundation, Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| | - Hareendran. J Nair
- 2Department of R&D, Pankajakasthuri Herbals India Pvt Ltd., Pankajakasthuri Ayurveda Medical College Campus, Trivandrum, Kerala, India
| |
Collapse
|
10
|
Contreras Martínez OI, Angulo Ortíz A, Santafé Patiño G. Antibacterial Screening of Isoespintanol, an Aromatic Monoterpene Isolated from Oxandra xylopioides Diels. Molecules 2022; 27:8004. [PMID: 36432105 PMCID: PMC9692887 DOI: 10.3390/molecules27228004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
The incidence of nosocomial infections, as well as the high mortality and drug resistance expressed by nosocomial pathogens, especially in immunocompromised patients, poses significant medical challenges. Currently, the efficacy of plant compounds with antimicrobial potential has been reported as a promising alternative therapy to traditional methods. Isoespintanol (ISO) is a monoterpene with high biological activity. Using the broth microdilution method, the antibacterial activity of ISO was examined in 90 clinical isolates, which included 14 different species: (Escherichia coli (38), Pseudomonas aeruginosa (12), Klebsiella pneumoniae (13), Acinetobacter baumannii (3), Proteus mirabilis (7), Staphylococcus epidermidis (3), Staphylococcus aureus (5), Enterococcus faecium (1), Enterococcus faecalis (1), Stenotrophomonas maltophilia (2), Citrobacter koseri (2), Serratia marcescens (1), Aeromonas hydrophila (1), and Providencia rettgeri (1). MIC90 minimum inhibitory concentration values ranged from 694.3 to 916.5 µg/mL and MIC50 values from 154.2 to 457.3 µg/mL. The eradication of mature biofilms in P. aeruginosa after 1 h of exposure to ISO was between 6.6 and 77.4%, being higher in all cases than the percentage of biofilm eradication in cells treated with ciprofloxacin, which was between 4.3 and 67.5%. ISO has antibacterial and antibiofilm potential against nosocomial bacteria and could serve as an adjuvant in the control of these pathogens.
Collapse
Affiliation(s)
| | - Alberto Angulo Ortíz
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| | - Gilmar Santafé Patiño
- Chemistry Department, Faculty of Basic Sciences, University of Córdoba, Montería 230002, Colombia
| |
Collapse
|