1
|
Guzmán-Armenteros TM, Ruales J, Ramos-Guerrero L. A Review of Electromagnetic Fields in Cellular Interactions and Cacao Bean Fermentation. Foods 2024; 13:3058. [PMID: 39410093 PMCID: PMC11475052 DOI: 10.3390/foods13193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The influence of magnetic fields on biological systems, including fermentation processes and cocoa bean fermentation, is an area of study that is under development. Mechanisms, such as magnetosensitivity, protein conformational changes, changes to cellular biophysical properties, ROS production, regulation of gene expression, and epigenetic modifications, have been identified to explain how magnetic fields affect microorganisms and cellular processes. These mechanisms can alter enzyme activity, protein stability, cell signaling, intercellular communication, and oxidative stress. In cacao fermentation, electromagnetic fields offer a potential means to enhance the sensory attributes of chocolate by modulating microbial metabolism and optimizing flavor and aroma development. This area of study offers possibilities for innovation and the creation of premium food products. In this review, these aspects will be explored systematically and illustratively.
Collapse
Affiliation(s)
- Tania María Guzmán-Armenteros
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Carrera de Ingeniería en Alimentos, Escuela Superior Politécnica del Litoral, Campus Gustavo Galindo, km 30.5 Vía Perimetral, Guayaquil 090902, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional (EPN), Quito 170525, Ecuador; (T.M.G.-A.); (J.R.)
| | - Luis Ramos-Guerrero
- Grupo de Investigación Bio-Quimioinformática, Carrera de Ingeniería Agroindustrial, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito 170503, Ecuador
| |
Collapse
|
2
|
Mironov VL. Geomagnetic Anomaly in the Growth Response of Peat Moss Sphagnum riparium to Temperature. PLANTS (BASEL, SWITZERLAND) 2023; 13:48. [PMID: 38202356 PMCID: PMC10780739 DOI: 10.3390/plants13010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Temperature plays an essential role in a plant's life. The current investigation reveals that photoreceptors, whose activity is affected by the geomagnetic field, are a critical element of its perception. This knowledge suggests that plants' responses to temperature could shift in different geomagnetic conditions. To test this hypothesis, we studied the change in the growth response of the peat moss Sphagnum riparium to temperature with a gradual increase in the geomagnetic Kp index. Growth data for this species were collected from Karelian mires by detailed monitoring over eight full growing seasons. The growth of 209,490 shoots was measured and 1439 growth rates were obtained for this period. The analysis showed a strong positive dependence of sphagnum growth on temperature (r = 0.58; n = 1439; P = 1.7 × 10-119), which is strongest in the Kp range from 0.87 to 1.61 (r = 0.65; n = 464; P = 4.5 × 10-58). This Kp interval is clearer after removing the seasonal contributions from the growth rate and temperature and is preserved when diurnal temperature is used. Our results are consistent with the hypothesis and show the unknown contribution of the geomagnetic field to the temperature responses of plants.
Collapse
Affiliation(s)
- Victor L Mironov
- Institute of Biology of the Karelian Research, Centre of the Russian Academy of Sciences, Pushkinskaya St. 11, 185910 Petrozavodsk, Russia
| |
Collapse
|
3
|
Porcher A, Girard S, Bonnet P, Rouveure R, Guérin V, Paladian F, Vian A. Non thermal 2.45 GHz electromagnetic exposure causes rapid changes in Arabidopsis thaliana metabolism. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:153999. [PMID: 37210775 DOI: 10.1016/j.jplph.2023.153999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/13/2023] [Accepted: 04/28/2023] [Indexed: 05/23/2023]
Abstract
Numerous studies report different types of responses following exposure of plants to high frequency electromagnetic fields (HF-EMF). While this phenomenon is related to tissue heating in animals, the situation is much less straightforward in plants where metabolic changes seem to occur without tissue temperature increase. We have set up an exposure system allowing reliable measurements of tissue heating (using a reflectometric probe and thermal imaging) after a long exposure (30 min) to an electromagnetic field of 2.45 GHz transmitted through a horn antenna (about 100 V m-1 at the plant level). We did not observe any heating of the tissues, but we detected rapid increases (60 min) in the accumulation of transcripts of stress-related genes (TCH1 and ZAT12 transcription factor) or involved in ROS metabolism (RBOHF and APX1). At the same time, the amounts of hydrogen peroxide and dehydroascorbic acid increased while glutathione (reduced and oxidized forms), ascorbic acid, and lipid peroxidation remained stable. Therefore, our results unambiguously show that molecular and biochemical responses occur rapidly (within 60min) in plants after exposure to an electromagnetic field, in absence of tissue heating.
Collapse
Affiliation(s)
- Alexis Porcher
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Sébastien Girard
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Pierre Bonnet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Raphaël Rouveure
- INRAE Clermont Clermont Auvergne University, INRAE, UR TSCF, F-63000, Clermont-Ferrand, France
| | - Vincent Guérin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France
| | - Françoise Paladian
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000, Clermont-Ferrand, France
| | - Alain Vian
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
4
|
Binhi VN. Statistical Amplification of the Effects of Weak Magnetic Fields in Cellular Translation. Cells 2023; 12:724. [PMID: 36899858 PMCID: PMC10000676 DOI: 10.3390/cells12050724] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
We assume that the enzymatic processes of recognition of amino acids and their addition to the synthesized molecule in cellular translation include the formation of intermediate pairs of radicals with spin-correlated electrons. The mathematical model presented describes the changes in the probability of incorrectly synthesized molecules in response to a change in the external weak magnetic field. A relatively high chance of errors has been shown to arise from the statistical enhancement of the low probability of local incorporation errors. This statistical mechanism does not require a long thermal relaxation time of electron spins of about 1 μs-a conjecture often used to match theoretical models of magnetoreception with experiments. The statistical mechanism allows for experimental verification by testing the usual Radical Pair Mechanism properties. In addition, this mechanism localizes the site where magnetic effects originate, the ribosome, which makes it possible to verify it by biochemical methods. This mechanism predicts a random nature of the nonspecific effects caused by weak and hypomagnetic fields and agrees with the diversity of biological responses to a weak magnetic field.
Collapse
Affiliation(s)
- Vladimir N Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|