1
|
Gallagher LT, LaCroix I, Fields AT, Mitra S, Argabright A, D'Alessandro A, Erickson C, Nunez-Garcia B, Herrera-Rodriguez K, Chou YC, Stocker BW, Ramser BJ, Thielen O, Hallas W, Silliman CC, Kornblith LZ, Cohen MJ. Platelet releasates mitigate the endotheliopathy of trauma. J Trauma Acute Care Surg 2024; 97:738-746. [PMID: 38764145 PMCID: PMC11502277 DOI: 10.1097/ta.0000000000004342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
BACKGROUND Platelets are well known for their roles in hemostasis, but they also play a key role in thromboinflammatory pathways by regulating endothelial health, stimulating angiogenesis, and mediating host defense through both contact dependent and independent signaling. When activated, platelets degranulate releasing multiple active substances. We hypothesized that the soluble environment formed by trauma platelet releasates (TPR) attenuates thromboinflammation via mitigation of trauma induced endothelial permeability and metabolomic reprogramming. METHODS Blood was collected from injured and healthy patients to generate platelet releasates and plasma in parallel. Permeability of endothelial cells when exposed to TPR and plasma (TP) was assessed via resistance measurement by electric cell-substrate impedance sensing (ECIS). Endothelial cells treated with TPR and TP were subjected to mass spectrometry-based metabolomics. RESULTS TP increased endothelial permeability, whereas TPR decreased endothelial permeability when compared with untreated cells. When TP and TPR were mixed ex vivo, TPR mitigated TP-induced permeability, with significant increase in AUC compared with TP alone. Metabolomics of TPR and TP demonstrated disrupted redox reactions and anti-inflammatory mechanisms. CONCLUSION Trauma platelet releasates provide endothelial barrier protection against TP-induced endothelial permeability. Our findings highlight a potential beneficial action of activated platelets on the endothelium in injured patients through disrupted redox reactions and increased antioxidants. Our findings support that soluble signaling from platelet degranulation may mitigate the endotheliopathy of trauma. The clinical implications of this are that activated platelets may prove a promising therapeutic target in the complex integration of thrombosis, endotheliopathy, and inflammation in trauma.
Collapse
Affiliation(s)
- Lauren T Gallagher
- From the Department of Surgery (L.T.G., S.M., B.W.S., B.J.R., O.T., W.H., M.J.C.), Department of Biochemistry and Molecular Genetics (I.L.C., C.E.), University of Colorado, School of Medicine, Aurora, Colorado; Department of Surgery (A.T.F., B.N.-G., K.H.-R., Y.C.C., L.Z.K.), University of California, San Francisco, San Francisco, California; Mass Spectrometry Core Facility (A.A.), University of Colorado, School of Medicine; Department of Biochemistry and Molecular Genetics (A.D'A.), University of Colorado Anschutz Medical Campus, School of Medicine; Vitalant Research Institute, Department of Surgery (C.C.S.), Department of Pediatrics (C.C.S.), University of Colorado, School of Medicine, Aurora, Colorado; and Department of Laboratory Medicine (L.Z.K.), University of California, San Francisco, San Francisco, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Svobodová G, Horní M, Velecká E, Boušová I. Metabolic dysfunction-associated steatotic liver disease-induced changes in the antioxidant system: a review. Arch Toxicol 2024:10.1007/s00204-024-03889-x. [PMID: 39443317 DOI: 10.1007/s00204-024-03889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogeneous condition characterized by liver steatosis, inflammation, consequent fibrosis, and cirrhosis. Chronic impairment of lipid metabolism is closely related to oxidative stress, leading to cellular lipotoxicity, mitochondrial dysfunction, and endoplasmic reticulum stress. The detrimental effect of oxidative stress is usually accompanied by changes in antioxidant defense mechanisms, with the alterations in antioxidant enzymes expression/activities during MASLD development and progression reported in many clinical and experimental studies. This review will provide a comprehensive overview of the present research on MASLD-induced changes in the catalytic activity and expression of the main antioxidant enzymes (superoxide dismutases, catalase, glutathione peroxidases, glutathione S-transferases, glutathione reductase, NAD(P)H:quinone oxidoreductase) and in the level of non-enzymatic antioxidant glutathione. Furthermore, an overview of the therapeutic effects of vitamin E on antioxidant enzymes during the progression of MASLD will be presented. Generally, at the beginning of MASLD development, the expression/activity of antioxidant enzymes usually increases to protect organisms against the increased production of reactive oxygen species. However, in advanced stage of MASLD, the expression/activity of several antioxidants generally decreases due to damage to hepatic and extrahepatic cells, which further exacerbates the damage. Although the results obtained in patients, in various experimental animal or cell models have been inconsistent, taken together the importance of antioxidant enzymes in MASLD development and progression has been clearly shown.
Collapse
Affiliation(s)
- Gabriela Svobodová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Martin Horní
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Eva Velecká
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
3
|
Robert G, Wagner JR. Scavenging of Alkylperoxyl Radicals by Addition to Ascorbate: An Alternative Mechanism to Electron Transfer. Antioxidants (Basel) 2024; 13:1194. [PMID: 39456448 PMCID: PMC11504153 DOI: 10.3390/antiox13101194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Vitamin C (ascorbate; Asc) is a biologically important antioxidant that scavenges reactive oxygen species such as deleterious alkylperoxyl radicals (ROO•), which are generated by radical-mediated oxidation of biomolecules in the presence of oxygen. The radical trapping proprieties of Asc are conventionally attributed to its ability to undergo single-electron transfers with reactive species. According to this mechanism, the reaction between Asc and ROO• results in the formation of dehydroascorbate (DHA) and the corresponding hydroperoxides (ROOH). When studying the reactivity of DNA 5-(2'-deoxyuridinyl)methylperoxyl radicals, we discovered a novel pathway of ROO• scavenging by Asc. The purpose of this study is to elucidate the underlying mechanism of this reaction with emphasis on the characterization of intermediate and final decomposition products. We show that the trapping of ROO• by Asc leads to the formation of an alcohol (ROH) together with an unstable cyclic oxalyl-l-threonate intermediate (cOxa-Thr), which readily undergoes hydrolysis into a series of open-chain oxalyl-l-threonic acid regioisomers. The structure of products was determined by detailed MS and NMR analyses. The above transformation can be explained by initial peroxyl radical addition (PRA) onto the C2=C3 enediol portion of Asc. Following oxidation of the resulting adduct radical, the product subsequently undergoes Baeyer-Villiger rearrangement, which releases ROH and generates the ring expansion product cOxa-Thr. The present investigation provides robust clarifications of the peroxide-mediated oxidation chemistry of Asc and DHA that has largely been obscured in the past by interference with autooxidation reactions and difficulties in analyzing and characterizing oxidation products. Scavenging of ROO• by PRA onto Asc may have beneficial consequences since it directly converts ROO• into ROH, which prevents the formation of potentially deleterious ROOH, although it induces the breakdown of Asc into fragments of oxalyl-l-threonic acid.
Collapse
Affiliation(s)
- Gabriel Robert
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| | - J. Richard Wagner
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
4
|
Simmons GL, Sabo R, Qayyum R, Aziz M, Martin E, Bernard RJ, Sriparna M, McIntire C, Krieger E, Brophy DF, Natarajan R, III AF, Roberts CH, Toor A. Feasibility of intravenous vitamin C supplementation in allogeneic hematopoietic cell transplant recipients. EJHAEM 2024; 5:1043-1047. [PMID: 39415933 PMCID: PMC11474309 DOI: 10.1002/jha2.995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/31/2024] [Indexed: 10/19/2024]
Abstract
Introduction Intravenous vitamin C was administered following hematopoietic stem cell transplant to mitigate nonrelapse mortality (NRM) in a Phase II clinical trial. Methods Patients with advanced hematologic malignancies received IV vitamin C, 50 mg/kg/day, in three divided doses on days 1-14 after HSCT, followed by 500 mg bid oral until 6 months. Results All patients enrolled (55) were deficient in vitamin C at day 0 and had restoration to normal levels. Vitamin C recipients had a trend for lower nonrelapse mortality (NRM, 11% vs. 25%, p-value = 0.07) compared with propensity score-matched historical controls. A similar trend toward improved survival was observed (82% vs. 62% p = 0.06), with no attributable grade 3 and 4 toxicities to vitamin C. Conclusion In patients undergoing allogeneic HSCT, repletion of vitamin C is feasible and may reduce NRM and improve overall survival. Randomized trials in large uniform cohorts of patients are needed to confirm the utility of this easily available and inexpensive therapy.
Collapse
Affiliation(s)
- Gary L. Simmons
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Roy Sabo
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Rehan Qayyum
- Department of Internal MedicineEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - May Aziz
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Erika Martin
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Robyn J. Bernard
- Department of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Manjari Sriparna
- Department of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Cody McIntire
- Department of MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Elizabeth Krieger
- Department of PediatricsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Donald F. Brophy
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Ramesh Natarajan
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Alpha Fowler III
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Catherine H. Roberts
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Amir Toor
- Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Topper Cancer InstituteLehigh Valley Health NetworkAllentownPennsylvaniaUSA
| |
Collapse
|
5
|
Emanuele S, Giuliano M. Riding the Wave of Ambivalence in Cell Biology. Int J Mol Sci 2024; 25:7348. [PMID: 39000455 PMCID: PMC11242416 DOI: 10.3390/ijms25137348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Increasing evidence clearly shows that most functional molecules in the cell exert a dual role depending on the specific interactive context, biochemical pathway, or subcellular localization [...].
Collapse
Affiliation(s)
- Sonia Emanuele
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), Biochemistry Building, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | - Michela Giuliano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), Laboratory of Biochemistry, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| |
Collapse
|
6
|
Yi B, Pan J, Yang Z, Zhu Z, Sun Y, Guo T, Zhao Z. Mesenchymal stem cell-derived exosomes promote tissue repair injury in rats with liver trauma by regulating gut microbiota and metabolism. Mol Cell Probes 2024; 75:101958. [PMID: 38518900 DOI: 10.1016/j.mcp.2024.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
OBJECTIVE The effects of mesenchymal stem cells (MSCs) and MSC-derived exosomes (MSC-exos) on serum metabolites and intestinal microbiota in rats after liver trauma were discussed. METHODS Adult Wistar Albino rats were assigned into control, model (liver trauma), MSCs, and MSC-exos groups (n = 6). The study examined changes in the inflammatory environment in liver tissues were analyzed by histological examination and analysis of macrophage phenotypes. Alterations in serum metabolites were determined by untargeted metabonomics, and gut microbiota composition was characterized by 16S rDNA sequencing. Correlations between specific gut microbiota, metabolites, and inflammatory response were calculated using Spearman correlation analysis. RESULTS Rats with liver trauma after MSCs and MSC-exos treatment exhibited attenuated inflammatory infiltration and necrosis in liver tissues. MSCs and MSC-exos treatment reduced the proportion of M1 macrophages, accompanied by a decrease in inducible nitric oxide synthase (iNOS) and tumor necrosis factor-alpha (TNF-α) levels. Furthermore, MSCs and MSC-exos treatment expanded the proportion of M2 macrophages, accompanied by an increase in arginase-1 (Arg-1) and interleukin-10 (IL-10) levels. The beneficial effects of MSC-exo treatment on rats with liver trauma were superior to those of MSC treatment. The composition and abundance of the gut microbiota and metabolites were altered in pathological rats, whereas MSC and MSC-exo intervention partially restored specific gut microbiota and metabolite alterations. At the phylum level, alterations in Bacteroidota, Proteobacteria, and Verrucomicrobiota were observed after MSC and MSC-exo intervention. At the genus level, Intestinimonas, Alistipes, Aerococcus, Faecalibaculum, and Lachnospiraceae_ND3007_group were the main differential microbiota. 6-Methylnicotinamide, N-Methylnicotinamide, Glutathione, oxidized, ISOBUTYRATE, ASCORBATE, EICOSAPENTAENOATE, GLYCEROL 3-PHOSPHATE, and Ascorbate radical were selected as important differential metabolites. There was a clear correlation between Ascorbate, Intestinimonas/Faecalibaculum and inflammatory cytokines. CONCLUSION MSC-exos promoted the repair of tissue damage in rats with liver trauma by regulating serum metabolites and intestinal microbiota, providing new insights into how MSC-exos reduced inflammation in rats with liver trauma.
Collapse
Affiliation(s)
- Bo Yi
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Juan Pan
- Department of Ultrasound, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhaoming Yang
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zemin Zhu
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Yongkang Sun
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Tao Guo
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Zhijian Zhao
- Center of Hepatobiliary and Pancreatic Surgery, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
| |
Collapse
|
7
|
Bouraguba M, Schmitt AM, Yelisetty VS, Vileno B, Melin F, Glattard E, Orvain C, Lebrun V, Raibaut L, Ilbert M, Bechinger B, Hellwig P, Gaiddon C, Sour A, Faller P. Quest for a stable Cu-ligand complex with a high catalytic activity to produce reactive oxygen species. Metallomics 2024; 16:mfae020. [PMID: 38614957 DOI: 10.1093/mtomcs/mfae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/15/2024]
Abstract
Metal ion-catalyzed overproduction of reactive oxygen species (ROS) is believed to contribute significantly to oxidative stress and be involved in several biological processes, from immune defense to development of diseases. Among the essential metal ions, copper is one of the most efficient catalysts in ROS production in the presence of O2 and a physiological reducing agent such as ascorbate. To control this chemistry, Cu ions are tightly coordinated to biomolecules. Free or loosely bound Cu ions are generally avoided to prevent their toxicity. In the present report, we aim to find stable Cu-ligand complexes (Cu-L) that can efficiently catalyze the production of ROS in the presence of ascorbate under aerobic conditions. Thermodynamic stability would be needed to avoid dissociation in the biological environment, and high ROS catalysis is of interest for applications as antimicrobial or anticancer agents. A series of Cu complexes with the well-known tripodal and tetradentate ligands containing a central amine linked to three pyridyl-alkyl arms of different lengths were investigated. Two of them with mixed arm length showed a higher catalytic activity in the oxidation of ascorbate and subsequent ROS production than Cu salts in buffer, which is an unprecedented result. Despite these high catalytic activities, no increased antimicrobial activity toward Escherichia coli or cytotoxicity against eukaryotic AGS cells in culture related to Cu-L-based ROS production could be observed. The potential reasons for discrepancy between in vitro and in cell data are discussed.
Collapse
Affiliation(s)
- Merwan Bouraguba
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Adeline M Schmitt
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Venkata Suseela Yelisetty
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Frédéric Melin
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Elise Glattard
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Orvain
- Inserm UMR_S 1113, Université de Strasbourg, 3 avenue Molière, 67200 Strasbourg, France
| | - Vincent Lebrun
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Laurent Raibaut
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Marianne Ilbert
- Aix-Marseille Université, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), UMR 7281, IMM, Marseille, France
| | - Burkhard Bechinger
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| | - Petra Hellwig
- Laboratoire de Bioélectrochimie et Spectroscopie, UMR 7140, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| | - Christian Gaiddon
- Inserm UMR_S 1113, Université de Strasbourg, 3 avenue Molière, 67200 Strasbourg, France
| | - Angélique Sour
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Peter Faller
- Institut de Chimie, UMR 7177, Université́ de Strasbourg, CNRS, 4 Rue Blaise Pascal, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
8
|
Bo T, Nohara H, Yamada KI, Miyata S, Fujii J. Ascorbic Acid Protects Bone Marrow from Oxidative Stress and Transient Elevation of Corticosterone Caused by X-ray Exposure in Akr1a-Knockout Mice. Antioxidants (Basel) 2024; 13:152. [PMID: 38397750 PMCID: PMC10886414 DOI: 10.3390/antiox13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Bone marrow cells are the most sensitive to exposure to X-rays in the body and are selectively damaged even by doses that are generally considered permissive in other organs. Ascorbic acid (Asc) is a potent antioxidant that is reported to alleviate damages caused by X-ray exposure. However, rodents can synthesize Asc, which creates difficulties in rigorously assessing its effects in such laboratory animals. To address this issue, we employed mice with defects in their ability to synthesize Asc due to a genetic ablation of aldehyde reductase (Akr1a-KO). In this study, concentrations of white blood cells (WBCs) were decreased 3 days after exposure to X-rays at 2 Gy and then gradually recovered. At approximately one month, the recovery rate of WBCs was delayed in the Akr1a-KO mouse group, which was reversed via supplementation with Asc. Following exposure to X-rays, Asc levels decreased in plasma, bone marrow cells, and the liver during an early period, and then started to increase. X-ray exposure stimulated the pituitary gland to release adrenocorticotropic hormone (ACTH), which stimulated corticosterone secretion. Asc released from the liver, which was also stimulated by ACTH, appeared to be recruited to the bone marrow. Since corticosterone in high doses is injurious, these collective results imply that Asc protects bone marrow via its antioxidant capacity against ROS produced via exposure to X-rays and the cytotoxic action of transiently elevated corticosterone.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Hidekazu Nohara
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan;
| | - Satoshi Miyata
- Miyata Diabetes and Metabolism Clinic, 5-17-21 Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
9
|
Simmons G, Sabo R, Aziz M, Martin E, Bernard RJ, Sriparna M, McIntire C, Krieger E, Brophy DF, Natarajan R, Fowler A, Roberts CH, Toor A. INTRAVENOUS VITAMIN C SUPPLEMENTATION IN ALLOGENEIC HEMATOPOIETIC CELL TRANSPLANT RECIPIENTS: SALUTARY IMPACT ON CLINICAL OUTCOMES. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.24.23297165. [PMID: 37961224 PMCID: PMC10635184 DOI: 10.1101/2023.10.24.23297165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Intravenous (IV) vitamin C improves organ function and reduces inflammation in sepsis, an inflammatory state like the post-hematopoietic stem cell transplant (SCT) milieu. The safety and efficacy of parenteral vitamin C after allogeneic hematopoietic stem cell transplant (HSCT) were evaluated in a phase I/II trial and clinical outcomes compared with a propensity score - matched historical control. Methods Patients with advanced hematologic malignancies were enrolled in a phase 2 clinical trial, receiving IV vitamin C, 50mg/kg/d, divided into 3 doses given on days 1-14 after HSCT, followed by 500 mg bid oral from day 15 until 6 months post-SCT. Results 55 patients received IV vitamin C: these include 10/10 HLA-MRD and MUD (n=48) and 9/10 HLA MUD recipients (n=7). All patients enrolled were deficient in vitamin C at day 0 and had restoration to normal levels for the remainder of the course. Vitamin C recipients had lower non-relapse mortality (11% vs. 25%, p-value = 0.07) and consequently, improved survival compared to historical controls (82% vs 62% p=0.06), with no attributable grade 3 and 4 toxicities to vitamin C. Patients with myeloid malignancies had improved survival (83% vs. 54%, p=0.02) and non-relapse mortality (NRM) (10% vs. 37%, p=0.009), as well as chronic GVHD, with similar relapse rates compared to controls. Conclusions In patients undergoing allogeneic HSCT the administration of IV vitamin C is safe and reduces non-relapse mortality improving overall survival. Randomized trials are needed to confirm the utility of this easily available and inexpensive therapy.
Collapse
Affiliation(s)
- Gary Simmons
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Roy Sabo
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - May Aziz
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Erika Martin
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Robyn J Bernard
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Manjari Sriparna
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Cody McIntire
- School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Elizabeth Krieger
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia
| | - Donald F Brophy
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| | - Ramesh Natarajan
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Alpha Fowler
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | | | - Amir Toor
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
- Lehigh Valley Health Network, Allentown, Pennsylvania
| |
Collapse
|
10
|
Toor A, Simmons G, Sabo R, Aziz M, Martin E, Bernard R, Sriparna M, McIntire C, Kreiger E, Brophy D, Natarajan R, Fowler A, Roberts C. Intravenous Vitamin C Supplementation in Allogeneic Hematopoietic Cell Transplant Recipients: Salutary Impact on Clinical Outcomes. RESEARCH SQUARE 2023:rs.3.rs-3538792. [PMID: 37986783 PMCID: PMC10659544 DOI: 10.21203/rs.3.rs-3538792/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Intravenous (IV) vitamin C improves organ function and reduces inflammation in sepsis, an inflammatory state like the post-hematopoietic stem cell transplant (HCT) milieu. The safety and efficacy of parenteral vitamin C after allogeneic HCT were evaluated in a phase I/II trial. Clinical outcomes were compared with a propensity score - matched historical control. Methods Patients with advanced hematologic malignancies received IV vitamin C, 50mg/kg/d, divided into 3 doses given on days 1-14 after HCT, followed by 500 mg bid oral from day 15 until 6 months post-SCT. Results 55 patients received IV vitamin C. All patients were deficient in vitamin C at day 0. Vitamin C recipients had lower non-relapse mortality (NRM) (p = 0.07) and improved survival compared to historical controls (p=0.06), with no attributable grade 3 and 4 toxicities. Vitamin C recipients had similar relapse rate and acute graft versus host disease (GVHD) (p=0.35), but lower severe chronic GVHD (p=0.35). Patients with myeloid malignancies had improved survival (p=0.02) and NRM (p=0.009), as well as chronic GVHD, with similar relapse rates compared to controls. Conclusions In patients undergoing allogeneic HCT the administration of IV vitamin C is safe and reduces non-relapse mortality and chronic GVHD improving overall survival.
Collapse
Affiliation(s)
- Amir Toor
- Virginia Commonwealth University Massey Cancer Center
| | - Gary Simmons
- Virginia Commonwealth University Massey Cancer Center
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Teixeira V, Mohamed I, Lavoie JC. Disturbances of the Lung Glutathione System in Adult Guinea Pigs Following Neonatal Vitamin C or Cysteine Deficiency. Antioxidants (Basel) 2023; 12:1361. [PMID: 37507901 PMCID: PMC10376486 DOI: 10.3390/antiox12071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
In premature infants receiving parenteral nutrition, oxidative stress is a trigger for the development of bronchopulmonary dysplasia, which is an important factor in the development of adult lung diseases. Neonatal vitamin C and glutathione deficiency is suspected to induce permanent modification of redox metabolism favoring the development of neonatal and adult lung diseases. A total of 64 3-day-old guinea pigs were fed an oral diet that was either complete or deficient in vitamin C (VCD), cysteine (CD) (glutathione-limiting substrate) or both (DD) for 4 days. At 1 week of age, half of the animals were sacrificed while the other started a complete diet until 12 weeks of age. At 1 week, the decrease in lung GSH in all deficient groups was partially explained by the oxidation of liver methionine-adenosyltransferase. mRNA levels of kelch-like ECH-associated protein 1 (Keap1), glutathione-reductase (Gsr) and glutaredoxin-1 (Glrx) were significantly lower only in CD but not in DD. At 12 weeks, glutathione levels were increased in VCD and CD. Keap1, Gsr and Glrx mRNA were increased, while glutathione-reductase and glutaredoxin proteins were lower in CD, favoring a higher glutathionylation status. Both neonatal deficiencies result in a long-term change in glutathione metabolism that could contribute to lung diseases' development.
Collapse
Affiliation(s)
- Vitor Teixeira
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Ibrahim Mohamed
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| | - Jean-Claude Lavoie
- Department of Nutrition, Université de Montréal, Montréal, QC H3T 1C5, Canada
- Department of Pediatrics-Neonatology, CHU Sainte-Justine, Université de Montréal, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
12
|
Tyuryaeva I, Lyublinskaya O. Expected and Unexpected Effects of Pharmacological Antioxidants. Int J Mol Sci 2023; 24:ijms24119303. [PMID: 37298254 DOI: 10.3390/ijms24119303] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/06/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In this review, we have collected the existing data on the bioactivity of antioxidants (N-acetylcysteine, polyphenols, vitamin C) which are traditionally used in experimental biology and, in some cases, in the clinic. Presented data show that, despite the capacity of these substances to scavenge peroxides and free radicals in cell-free systems, their ability to exhibit these properties in vivo, upon pharmacological supplementation, has not been confirmed so far. Their cytoprotective activity is explained mainly by the ability not to suppress, but to activate multiple redox pathways, which causes biphasic hormetic responses and highly pleiotropic effects in cells. N-acetylcysteine, polyphenols, and vitamin C affect redox homeostasis by generating low-molecular-weight redox-active compounds (H2O2 or H2S), known for their ability to stimulate cellular endogenous antioxidant defense and promote cytoprotection at low concentrations but exert deleterious effects at high concentrations. Moreover, the activity of antioxidants strongly depends on the biological context and mode of their application. We show here that considering the biphasic and context-dependent response of cells on the pleiotropic action of antioxidants can help explain many of the conflicting results obtained in basic and applied research and build a more logical strategy for their use.
Collapse
Affiliation(s)
- Irina Tyuryaeva
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia
| | - Olga Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology of the Russian Academy of Sciences, Tikhoretskii pr. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
13
|
Fujii J, Yamada KI. Defense systems to avoid ferroptosis caused by lipid peroxidation-mediated membrane damage. Free Radic Res 2023; 57:353-372. [PMID: 37551716 DOI: 10.1080/10715762.2023.2244155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
The presence of hydrogen peroxide along with ferrous iron produces hydroxyl radicals that preferably oxidize polyunsaturated fatty acids (PUFA) to alkyl radicals (L•). The reaction of L• with an oxygen molecule produces lipid peroxyl radical (LOO•) that collectively trigger chain reactions, which results in the accumulation of lipid peroxidation products (LOOH). Oxygenase enzymes, such as lipoxygenase, also stimulate the peroxidation of PUFA. The production of phospholipid hydroperoxides (P-LOOH) can result in the destruction of the architecture of cell membranes and ultimate cell death. This iron-dependent regulated cell death is generally referred to as ferroptosis. Radical scavengers, which include tocopherol and nitric oxide (•NO), react with lipid radicals and terminate the chain reaction. When tocopherol reductively detoxifies lipid radicals, the resultant tocopherol radicals are recycled via reduction by coenzyme Q or ascorbate. CoQ radicals are reduced back by the anti-ferroptotic enzyme FSP1. •NO reacts with lipid radicals and produces less reactive nitroso compounds. The resulting P-LOOH is reductively detoxified by the action of glutathione peroxidase 4 (GPX4) or peroxiredoxin 6 (PRDX6). The hydrolytic removal of LOOH from P-LOOH by calcium-independent phospholipase A2 leads the preservation of membrane structure. While the expression of such protective genes or the presence of these anti-oxidant compounds serve to maintain a healthy condition, tumor cells employ them to make themselves resistant to anti-tumor treatments. Thus, these defense mechanisms against ferroptosis are protective in ordinary cells but are also potential targets for cancer treatment.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Ken-Ichi Yamada
- Faculty of Pharmaceutical Sciences, Physical Chemistry for Life Science Laboratory, Kyushu University, Fukuoka, Japan
| |
Collapse
|
14
|
Wang J, Liu YM, Hu J, Chen C. Trained immunity in monocyte/macrophage: Novel mechanism of phytochemicals in the treatment of atherosclerotic cardiovascular disease. Front Pharmacol 2023; 14:1109576. [PMID: 36895942 PMCID: PMC9989041 DOI: 10.3389/fphar.2023.1109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023] Open
Abstract
Atherosclerosis (AS) is the pathology of atherosclerotic cardiovascular diseases (ASCVD), characterized by persistent chronic inflammation in the vessel wall, in which monocytes/macrophages play a key role. It has been reported that innate immune system cells can assume a persistent proinflammatory state after short stimulation with endogenous atherogenic stimuli. The pathogenesis of AS can be influenced by this persistent hyperactivation of the innate immune system, which is termed trained immunity. Trained immunity has also been implicated as a key pathological mechanism, leading to persistent chronic inflammation in AS. Trained immunity is mediated via epigenetic and metabolic reprogramming and occurs in mature innate immune cells and their bone marrow progenitors. Natural products are promising candidates for novel pharmacological agents that can be used to prevent or treat cardiovascular diseases (CVD). A variety of natural products and agents exhibiting antiatherosclerotic abilities have been reported to potentially interfere with the pharmacological targets of trained immunity. This review describes in as much detail as possible the mechanisms involved in trained immunity and how phytochemicals of this process inhibit AS by affecting trained monocytes/macrophages.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, China
| |
Collapse
|