Zhang Y, Yang Y, Song J, Yu W, Li Y, Liu D, Gao J, Fan B, Wang F, Zheng Y. Laoxianghuang polysaccharide promotes the anti-inflammatory cytokine interleukin-10 in colitis via gut microbial linoleic acid.
PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024;
135:156136. [PMID:
39454376 DOI:
10.1016/j.phymed.2024.156136]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND
Our previous study found that the polysaccharide from Laoxianghuang (LP), fermented fruit of bergamot (traditional Chinese medicine and food), can alter gut microbiota and regulate short-chain fatty acids (SCFAs) in vitro. Nevertheless, there is a paucity of reports on the impact of LP on gut microbiota in vivo.
PURPOSE
To analyze the structures of LP, investigate the influence of LP on the damaged intestinal barrier in DSS-induced colitis mice, and further explore its potential mechanisms.
METHODS
We analyzed the physicochemical properties of purified LP by HPLC, SEM, and FT-IR spectrum. Then, to assess the effect of LP in DSS-induced colitis mice, we observed the damage to the colon tissue, measured inflammatory cytokines and tight junction protein expression through RT-qPCR as well as immunofluorescent staining, and investigated the influence of LP on altering gut microbiota and metabolites using 16 s rRNA sequencing and HPLC-MS/MS. Ultimately, the impact of linoleic acid on inflammatory cytokines was confirmed by the LPS-induced RAW264.7 cells.
RESULTS
LP, mainly galactoglucan, could inhibit weight loss and colon shortening, decrease levels of tumor necrosis factor-α (TNF-α), increase levels of interleukin-10 (IL-10) and the intestinal acetic acid and butyric acid, and promote the expression of tight junction proteins ZO-1 and Claudin-1. Meanwhile, LP enhanced the abundance of beneficial bacteria including Romboutsia, Eubacterium_coprostanoligenes_group, and Akkermansia, and regulated linoleic acid metabolism to increase the linoleic acid level. In vitro cell experiment proved that linoleic acid could elevate the level of IL-10 and inhibit inflammatory responses.
CONCLUSIONS
Our results suggested that LP effectively alleviated colitis by promoting the anti-inflammatory cytokine interleukin-10 via gut microbiota-mediated linoleic acid metabolism.
Collapse