1
|
Caldeira V, Fonseca TAH, N'Dembo L, Araújo R, Von Rekowski CP, Sampaio PNS, Calado CRC. A new methodology for a rapid and high-throughput comparison of molecular profiles and biological activity of phytoextracts. Biotechnol Bioeng 2024; 121:3047-3058. [PMID: 38760962 DOI: 10.1002/bit.28739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/24/2023] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
To robustly discover and explore phytocompounds, it is necessary to evaluate the interrelationships between the plant species, plant tissue, and the extraction process on the extract composition and to predict its cytotoxicity. The present work evaluated how Fourier Transform InfraRed spectroscopy can acquire the molecular profile of aqueous and ethanol-based extracts obtained from leaves, seeds, and flowers of Cynara Cardunculus, and ethanol-based extracts from Matricaria chamomilla flowers, as well the impact of these extracts on the viability of mammalian cells. The extract molecular profile enabled to predict the extraction yield, and how the plant species, plant tissue, and extraction process affected the extract's relative composition. The molecular profile obtained from the culture media of cells exposed to extracts enabled to capture its impact on cells metabolism, at a higher sensitivity than the conventional assay used to determine the cell viability. Furthermore, it was possible to detect specific impacts on the cell's metabolism according to plant species, plant tissue, and extraction process. Since spectra were acquired on small volumes of samples (25 µL), after a simple dehydration step, and based on a plate with 96 wells, the method can be applied in a rapid, simple, high-throughput, and economic mode, consequently promoting the discovery of phytocompounds.
Collapse
Affiliation(s)
- Viviana Caldeira
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Tiago A H Fonseca
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Luana N'Dembo
- COPELABS-Computação e Cognição Centrada nas Pessoas, Faculty of Engineering, Lusófona University, Lisbon, Portugal
| | - Rúben Araújo
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Cristiana P Von Rekowski
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
| | - Pedro N S Sampaio
- COPELABS-Computação e Cognição Centrada nas Pessoas, Faculty of Engineering, Lusófona University, Lisbon, Portugal
| | - Cecília R C Calado
- ISEL - Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Lisboa, Portugal
- i4HB - The Associate Laboratory Institute for Health and Bioeconomy, iBB - Institute for Bioengineering and Biosciences, IST - Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Colombo R, Moretto G, Pellicorio V, Papetti A. Globe Artichoke ( Cynara scolymus L.) By-Products in Food Applications: Functional and Biological Properties. Foods 2024; 13:1427. [PMID: 38790727 PMCID: PMC11119529 DOI: 10.3390/foods13101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Globe artichoke (Cynara cardunculus var. scolymus L.) is widely cultivated in the Mediterranean area and Italy is one of the largest producers. A great issue is represented by its high amount of by-product, mainly consisting of external bracts and stems, but also of residual leaves, stalks, roots, and seeds. Artichoke by-products are rich in nutrients (carbohydrates and proteins) and bioactive compounds (polyphenols and terpenes) and represent potential ingredients for foodstuffs, functional foods, and food supplements, due to their functional and biological properties. In fact, artichoke by-products' components exhibit many beneficial effects, such as dyspeptic, prebiotic, antioxidant, anti-inflammatory, antiglycative, antimicrobial, anticarcinogenic, and hypolipidemic properties. Therefore, they can be considered potential food ingredients useful in reducing the risk of developing metabolic and age-related disorders. This work summarizes the economic and environmental impact of the recovery and valorization of artichoke by-products, focusing on rheological, physical, and biological properties of the different components present in each by-product and their different food applications.
Collapse
Affiliation(s)
- Raffaella Colombo
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (V.P.)
| | - Giulia Moretto
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (V.P.)
| | - Vanessa Pellicorio
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (V.P.)
| | - Adele Papetti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (R.C.); (G.M.); (V.P.)
- C.S.G.I., University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
3
|
Herrero M. Towards green extraction of bioactive natural compounds. Anal Bioanal Chem 2024; 416:2039-2047. [PMID: 37787854 PMCID: PMC10951045 DOI: 10.1007/s00216-023-04969-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
The increasing interest in natural bioactive compounds is pushing the development of new extraction processes that may allow their recovery from a variety of different natural matrices and biomasses. These processes are clearly sought to be more environmentally friendly than the conventional alternatives that have traditionally been used and are closely related to the 6 principles of green extraction of natural products. In this trend article, the most critical aspects regarding the current state of this topic are described, showing the different lines followed to make extraction processes greener, illustrated by relevant examples. These include the implementation of new extraction technologies, the research on new bio-based solvents, and the development of new sequential process and biorefinery approaches to produce a full valorization of the natural sources. Moreover, the future outlook in the field is presented, in which the main areas of evolution are identified and discussed.
Collapse
Affiliation(s)
- Miguel Herrero
- Laboratory of Foodomics, Institute of Food Science Research-CIAL (CSIC-UAM), Calle Nicolás Cabrera 9, 28049, Madrid, Spain.
| |
Collapse
|
4
|
Dai W, Zhang L, Dai L, Tian Y, Ye X, Wang S, Li J, Wang Q. Comparative Analysis of Chemical Composition of Zanthoxylum myriacanthum Branches and Leaves by GC-MS and UPLC-Q-Orbitrap HRMS, and Evaluation of Their Antioxidant Activities. Molecules 2023; 28:5631. [PMID: 37570601 PMCID: PMC10419930 DOI: 10.3390/molecules28155631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Zanthoxylum myriacanthum Wall. ex Hook. f., a plant belonging to the Rutaceae family and the Zanthoxylum genus, is extensively utilized for its medicinal properties and as a culinary seasoning in China and Southeast Asian countries. However, the chemical composition and biological activities of Z. myriacanthum branches and leaves remain insufficiently explored. In this study, the volatile and non-volatile components of Z. myriacanthum branches and leaves were analyzed using GC-MS and UPLC-Q-Orbitrap HRMS techniques. A total of 78 volatile compounds and 66 non-volatile compounds were identified. The volatile compounds were predominantly terpenoids and aliphatic compounds, while the non-volatile compounds were primarily flavonoids and alkaloids. The branches contained 52 volatile compounds and 33 non-volatile compounds, whereas the leaves contained 48 volatile compounds and 40 non-volatile compounds. The antioxidant activities of the methanol extracts from Z. myriacanthum branches and leaves were evaluated using ABTS and DPPH free-radical-scavenging assays, both of which demonstrated certain antioxidant activity. The methanol extract of leaves demonstrated significantly higher antioxidant activity compared to that of the branches, possibly due to the higher presence of flavonoids and phenols in the leaves, with IC50 values of 7.12 ± 0.257 μg/mL and 1.22 × 102 ± 5.01 μg/mL for ABTS and DPPH, respectively. These findings enhance our understanding of the chemical composition and antioxidant potential of Z. myriacanthum. The plant holds promise as a natural source of antioxidants for applications in pharmaceuticals, cosmetics, and functional foods. Further research can explore its broader biological activities and potential applications.
Collapse
Affiliation(s)
- Wei Dai
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Liangqian Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Liping Dai
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Yuan Tian
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Xinger Ye
- College of Traditional Chinese Medicine Resources, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Sina Wang
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Jingtao Li
- Experimental Center of Yunfu Campus, Guangdong Pharmaceutical University, Yunfu 527325, China
| | - Qi Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| |
Collapse
|
5
|
Cannavacciuolo C, Pagliari S, Giustra CM, Carabetta S, Guidi Nissim W, Russo M, Branduardi P, Labra M, Campone L. LC-MS and GC-MS Data Fusion Metabolomics Profiling Coupled with Multivariate Analysis for the Discrimination of Different Parts of Faustrime Fruit and Evaluation of Their Antioxidant Activity. Antioxidants (Basel) 2023; 12:antiox12030565. [PMID: 36978813 PMCID: PMC10045819 DOI: 10.3390/antiox12030565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
The comparative chemical composition of different part of Faustrime fruits (peels, pulp, albedo, and seeds) extracted with different solvents was determined by GC-MS and UHPLC-HRMS QTof. The obtained data were also combined for their in vitro antioxidant activity by multivariate analysis to define a complex fingerprint of the fruit. The principal component analysis model showed the significative occurrence of volatile organic compounds as α-bisabolol and α-trans-bergamotol in the pulp and albedo, hexanoic acid in the seeds, and several coumarins and phenolics in the peels. The higher radical scavenging activity of the pulp was related to the incidence of citric acid in partial least square regression.
Collapse
Affiliation(s)
- Ciro Cannavacciuolo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Chiara Maria Giustra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
| | - Sonia Carabetta
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell'Università, 25, 89124 Reggio Calabria, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Mariateresa Russo
- Department of Agriculture Science, Food Chemistry, Safety and Sensoromic Laboratory (FoCuSS Lab), University of Reggio Calabria, Via dell'Università, 25, 89124 Reggio Calabria, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milan, Italy
- NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
6
|
Pagliari S, Forcella M, Lonati E, Sacco G, Romaniello F, Rovellini P, Fusi P, Palestini P, Campone L, Labra M, Bulbarelli A, Bruni I. Antioxidant and Anti-Inflammatory Effect of Cinnamon ( Cinnamomum verum J. Presl) Bark Extract after In Vitro Digestion Simulation. Foods 2023; 12:452. [PMID: 36765979 PMCID: PMC9914695 DOI: 10.3390/foods12030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Cinnamon bark is widely used for its organoleptic features in the food context and growing evidence supports its beneficial effect on human health. The market offers an increasingly wide range of food products and supplements enriched with cinnamon extracts which are eliciting beneficial and health-promoting properties. Specifically, the extract of Cinnamomum spp. is rich in antioxidant, anti-inflammatory and anticancer biomolecules. These include widely reported cinnamic acid and some phenolic compounds, such asproanthocyanidins A and B, and kaempferol. These molecules are sensitive to physical-chemical properties (such as pH and temperature) and biological agents that act during gastric digestion, which could impair molecules' bioactivity. Therefore, in this study, the cinnamon's antioxidant and anti-inflammatory bioactivity after simulated digestion was evaluated by analyzing the chemical profile of the pure extract and digested one, as well as the cellular effect in vitro models, such as Caco2 and intestinal barrier. The results showed that the digestive process reduces the total content of polyphenols, especially tannins, while preserving other bioactive compounds such as cinnamic acid. At the functional level, the digested extract maintains an antioxidant and anti-inflammatory effect at the cellular level.
Collapse
Affiliation(s)
- Stefania Pagliari
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Grazia Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Romaniello
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milano, Italy
| | - Pierangela Rovellini
- Innovhub Stazioni Sperimentali per l’Industria S.r.l., Via Giuseppe Colombo 79, 20133 Milano, Italy
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Luca Campone
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Massimo Labra
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy
| | - Ilaria Bruni
- ZooPlantLab, Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|