1
|
Simó-Cabrera L, García-Chumillas S, Benitez-Benitez SJ, Cánovas V, Monzó F, Pire C, Martínez-Espinosa RM. Production of Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV) by Haloferax mediterranei Using Candy Industry Waste as Raw Materials. Bioengineering (Basel) 2024; 11:870. [PMID: 39329612 PMCID: PMC11429114 DOI: 10.3390/bioengineering11090870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The haloarchaeon Haloferax mediterranei synthesizes poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) under unfavorable nutritional conditions without the addition of any precursor to the culture, which is an advantage compared to other microbial counterparts able to synthesize polyhydroxyalkanoates (PHA). PHBV is a biodegradable polymer showing physiochemical properties of biotechnological and biomedical interest and can be used as an alternative to plastics made from chemical synthesis (which are not environmentally friendly). The versatile metabolism of H. mediterranei makes the use of waste as a carbon source for cellular growth and PHA synthesis possible. In this work, cellular growth and the production and characterization of PHBV using two different types of confectionery waste were analyzed and compared with cellular growth and PHBV synthesis in a standard culture media with glucose of analytical grade as a carbon source. The PHBV granules produced were analyzed by TEM and the biopolymer was isolated and characterized by GC-MS, FTIR NMR, and DSC. The results reveal that H. mediterranei can use these two residues (R1 and R2) for pure PHBV production, achieving 0.256 and 0.983 g PHBV/L, respectively, which are among the highest yields so far described using for the first-time waste from the candy industry. Thus, a circular economy-based process has been designed to optimize the upscaling of PHBV production by using haloarchaea as cell factories and valorizing confectionery waste.
Collapse
Affiliation(s)
- Lorena Simó-Cabrera
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Salvador García-Chumillas
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
- Cetec Biotechnology, Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Sergio J Benitez-Benitez
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Verónica Cánovas
- Cetec Biotechnology, Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Fuensanta Monzó
- Technological Centre of Footwear and Plastic of the Region of Murcia (CETEC) Avda, Europa 4-5, E-30840 Alhama de Murcia, Spain
| | - Carmen Pire
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n-03690 San Vicente del Raspeig, E-03690 Alicante, Spain
- Multidisciplinary Institute for Environmental Studies "Ramón Margalef", University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
2
|
San Miguel-González GDJ, Alemán-Huerta ME, Martínez-Herrera RE, Quintero-Zapata I, de la Torre-Zavala S, Avilés-Arnaut H, Gandarilla-Pacheco FL, de Luna-Santillana EDJ. Alkaline-Tolerant Bacillus cereus 12GS: A Promising Polyhydroxybutyrate (PHB) Producer Isolated from the North of Mexico. Microorganisms 2024; 12:863. [PMID: 38792693 PMCID: PMC11124092 DOI: 10.3390/microorganisms12050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Environmental pollution caused by petroleum-derived plastics continues to increase annually. Consequently, current research is interested in the search for eco-friendly bacterial polymers. The importance of Bacillus bacteria as producers of polyhydroxyalkanoates (PHAs) has been recognized because of their physiological and genetic qualities. In this study, twenty strains of Bacillus genus PHA producers were isolated. Production was initially evaluated qualitatively to screen the strains, and subsequently, the strain B12 or Bacillus sp. 12GS, with the highest production, was selected through liquid fermentation. Biochemical and molecular identification revealed it as a novel isolate of Bacillus cereus. Production optimization was carried out using the Taguchi methodology, determining the optimal parameters as 30 °C, pH 8, 150 rpm, and 4% inoculum, resulting in 87% and 1.91 g/L of polyhydroxybutyrate (PHB). Kinetic studies demonstrated a higher production within 48 h. The produced biopolymer was analyzed using Fourier-transform infrared spectroscopy (FTIR), confirming the production of short-chain-length (scl) polyhydroxyalkanoate, named PHB, and differential scanning calorimetry (DSC) analysis revealed thermal properties, making it a promising material for various applications. The novel B. cereus isolate exhibited a high %PHB, emphasizing the importance of bioprospecting, study, and characterization for strains with biotechnological potential.
Collapse
Affiliation(s)
- Gustavo de J. San Miguel-González
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - María E. Alemán-Huerta
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Raul E. Martínez-Herrera
- Escuela de Ingenería y Ciencias, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey C.P. 64849, Nuevo León, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, Monterrey C.P. 64849, Nuevo León, Mexico
| | - Isela Quintero-Zapata
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Susana de la Torre-Zavala
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Hamlet Avilés-Arnaut
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Fátima L. Gandarilla-Pacheco
- Instituto de Biotecnología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba y Manuel L. Barragán S/N, San Nicolás de los Garza C.P. 66455, Nuevo León, Mexico; (G.d.J.S.M.-G.); (I.Q.-Z.); (S.d.l.T.-Z.); (H.A.-A.); (F.L.G.-P.)
| | - Erick de J. de Luna-Santillana
- Laboratorio Medicina de Conservación, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro esq, Elías Piña, Colonia Narciso Mendoza, Reynosa C.P. 88700, Tamaulipas, Mexico;
| |
Collapse
|
3
|
Mandragutti T, Jarso TS, Godi S, Begum SS, K B. Physicochemical characterization of polyhydroxybutyrate (PHB) produced by the rare halophile Brachybacterium paraconglomeratum MTCC 13074. Microb Cell Fact 2024; 23:59. [PMID: 38388436 PMCID: PMC10882773 DOI: 10.1186/s12934-024-02324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Polyhydroxybutyrate is a biopolymer produced by bacteria and archaea under nitrogen-limiting conditions. PHB is an essential polymer in the bioplastic sector because of its biodegradability, eco-friendliness, and adaptability. The characterization of PHB is a multifaceted process for studying the structure and its properties. This entire aspect can assure the long-term viability and performance attributes of the PHB. The characteristics of PHB extracted from the halophile Brachybacterium paraconglomeratum were investigated with the objective of making films for application in healthcare. RESULTS This was the first characterization study on PHB produced by a rare halophile, Brachybacterium paraconglomeratum (MTCC 13074). In this study, the strain produced 2.72 g/l of PHB for.5.1 g/l of biomass under optimal conditions. Methods are described for the determination of the physicochemical properties of PHB. The prominent functional groups CH3 and C = O were observed by FT-IR and the actual chemical structure of the PHB was deduced by NMR. GCMS detects the confirmation of four methyl ester derivatives of the extracted PHB in the sample. Mass spectrometry revealed the molecular weight of methyl 3-hydroxybutyric acid (3HB) present in the extract. The air-dried PHB films were exposed to TGA, DSC and a universal testing machine to determine the thermal profile and mechanical stability. Additionally, the essential property of biopolymers like viscosity was also assessed for the extracted PHB. CONCLUSIONS The current study demonstrated the consistency and quality of B. paraconglomeratum PHB. Therefore, Brachybacterium sps are also a considerable source of PHB with desired characteristics for industrial production.
Collapse
Affiliation(s)
- Teja Mandragutti
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India.
| | - Tura Safawo Jarso
- Department of Biology (Applied Genetics and Biotechnology Stream), College of Natural Sciences, Salale University, Fiche, Ethiopia
| | - Sudhakar Godi
- Department of Biotechnology, Andhra University, Visakhapatnam, 530 003, India
| | - S Sharmila Begum
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| | - Beulah K
- Department of Biotechnology, Dr Lankapalli Bullayya College, Visakhapatnam, 530013, India
| |
Collapse
|
4
|
Rizzarelli P, Leanza M, Rapisarda M. Investigations into the characterization, degradation, and applications of biodegradable polymers by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023. [PMID: 38014928 DOI: 10.1002/mas.21869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
Biodegradable polymers have been getting more and more attention because of their contribution to the plastic pollution environmental issues and to move towards a circular economy. Nevertheless, biodegradable materials still exhibit various disadvantages restraining a widespread use in the market. Therefore, additional research efforts are required to improve their performance. Mass spectrometry (MS) affords a relevant contribution to optimize biodegradable polymer synthesis, to confirm macromolecular structures, to examine along the time the progress of degradation processes and highlight advantages and drawbacks in the extensive applications. This review aims to provide an overview of the MS investigations carried out to support the synthesis of biodegradable polymers, with helpful information on undesirable products or polymerization mechanism, to understand deterioration pathways by the structure of degradation products and to follow drug release and pharmacokinetic. Additionally, it summarizes MS studies addressed on environmental and health issues related to the extensive use of plastic materials, that is, potential migration of additives or microplastics identification and quantification. The paper is focused on the most significant studies relating to synthetic and microbial biodegradable polymers published in the last 15 years, not including agro-polymers such as proteins and polysaccharides.
Collapse
Affiliation(s)
- Paola Rizzarelli
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Melania Leanza
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| | - Marco Rapisarda
- Consiglio Nazionale delle Ricerche (CNR), Istituto per i Polimeri Compositi e Biomateriali (IPCB), ede Secondaria di Catania, Catania, Italy
| |
Collapse
|
5
|
Aragosa A, Specchia V, Frigione M. Valorization of Waste from Argan Seeds for Polyhydroxybutyrate Production Using Bacterial Strains Isolated from Argan Soils. Polymers (Basel) 2023; 15:polym15081972. [PMID: 37112119 PMCID: PMC10141640 DOI: 10.3390/polym15081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this work was to study the valorization of argan seed pulp, a waste material obtained from argan oil extraction, for the biosynthesis of polyhydroxybutyrate (PHB). A new species that showed the metabolic capacity for the conversion of argan waste into the bio-based polymer was isolated from an argan crop located in Teroudant, a southwestern region of Morocco, where the arid soil is exploited for goat grazing. The PHB accumulation efficiency of this new species was compared to the previously identified species 1B belonging to the genus Sphingomonas, and results were reported as dry cell weight residual biomass and PHB final yield measured. Temperature, incubation time, pH, NaCl concentration, nitrogen sources, residue concentrations, and culture medium volumes were analyzed with the aim of obtaining a maximum accumulation of PHB. UV-visible spectrophotometry and FTIR analysis confirmed that PHB was present in the material extracted from the bacterial culture. The results of this wide investigation indicated that the new isolated species 2D1 had a higher efficiency in PHB production compared to the previously identified strain 1B, which was isolated from a contaminated argan soil in Teroudant. PHB final yield of the two bacterial species, i.e., the new isolated and 1B, cultivated under optimal culture conditions, in 500 mL MSM enriched with 3% argan waste, were 21.40% (5.91 ± 0.16 g/L) and 8.16% (1.92 ± 0.23 g/L), respectively. For the new isolated strain, the result of the UV-visible spectrum indicates the absorbance at 248 nm, while the FTIR spectrum showed peaks at 1726 cm-1 and 1270 cm-1: these characteristic peaks indicated the presence of PHB in the extract. The data from the species 1B UV-visible and FTIR spectra were previously reported and were used in this study for a correlation analysis. Furthermore, additional peaks, uncharacteristic of standard PHB, suggest the presence of impurities (e.g., cell debris, solvent residues, biomass residues) that persisted after extraction. Therefore, a further enhancement of the sample purification during extraction is recommended for more accuracy in the chemical characterization. If 470,000 tons of argan fruit waste can be produced annually, and 3% of waste is consumed in 500 mL culture by 2D1 to produce 5.91 g/L (21.40%) of the bio-based polymer PHB, it can be estimated that the amount of putative PHB that can be extracted annually from the total argan fruit waste is about 2300 tons.
Collapse
Affiliation(s)
- Amina Aragosa
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- School of Science and Engineering, Al Akhawayn University, Ifrane 53000, Morocco
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | | |
Collapse
|
6
|
Li HF, Tian L, Lian G, Fan LH, Li ZJ. Engineering Vibrio alginolyticus as a novel chassis for PHB production from starch. Front Bioeng Biotechnol 2023; 11:1130368. [PMID: 36824353 PMCID: PMC9941669 DOI: 10.3389/fbioe.2023.1130368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
Vibrio alginolyticus LHF01 was engineered to efficiently produce poly-3-hydroxybutyrate (PHB) from starch in this study. Firstly, the ability of Vibrio alginolyticus LHF01 to directly accumulate PHB using soluble starch as the carbon source was explored, and the highest PHB titer of 2.06 g/L was obtained in 18 h shake flask cultivation. Then, with the analysis of genomic information of V. alginolyticus LHF01, the PHB synthesis operon and amylase genes were identified. Subsequently, the effects of overexpressing PHB synthesis operon and amylase on PHB production were studied. Especially, with the co-expression of PHB synthesis operon and amylase, the starch consumption rate was improved and the PHB titer was more than doubled. The addition of 20 g/L insoluble corn starch could be exhausted in 6-7 h cultivation, and the PHB titer was 4.32 g/L. To the best of our knowledge, V. alginolyticus was firstly engineered to produce PHB with the direct utilization of starch, and this stain can be considered as a novel host to produce PHB using starch as the raw material.
Collapse
Affiliation(s)
- Hong-Fei Li
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,Qingyuan Innovation Laboratory, Quanzhou, China
| | - Linyue Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Guoli Lian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Li-Hai Fan
- College of Chemical Engineering, Fujian Engineering Research Center of Advanced Manufacturing Technology for Fine Chemicals, Fuzhou University, Fuzhou, China,Qingyuan Innovation Laboratory, Quanzhou, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| | - Zheng-Jun Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China,*Correspondence: Li-Hai Fan, ; Zheng-Jun Li,
| |
Collapse
|