1
|
Wang L, Zhu X, Liu H, Sun B. Medicine and food homology substances: A review of bioactive ingredients, pharmacological effects and applications. Food Chem 2025; 463:141111. [PMID: 39260169 DOI: 10.1016/j.foodchem.2024.141111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/13/2024]
Abstract
In recent years, the idea of medicine and food homology (MFH), which highlights the intimate relationship between food and medicine, has gained international recognition. Specifically, MFH substances have the ability to serve as both food and medicine. Many foods have been reported to have good nutritional and medical values, not only for satiety but also for nourishing the body and treating diseases pharmacologically. As modern scientific research has progressed, the concept of MFH has been emphasized and developed in a way that has never been seen before. Therefore, in this paper, we reviewed the development history of MFH substances, summarized some typical bioactive ingredients, and recognized pharmacological effects. In addition, we further discussed the application of MFH substances in the food field, with the goal of providing ideas and references for the research and development of MFH in the food industry as well as the progress of related industries.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Xuecheng Zhu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| | - Huilin Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China.
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education; School of Food and Health, Beijing Technology and Business University (BTBU), No. 11 Fucheng Road, Beijing 100048, People's Republic of China
| |
Collapse
|
2
|
Liu X, Dong W, Yi Y, Wang L, Hou W, Ai Y, Wang H, Min T. Comparison of Nutritional Quality and Functional Active Substances in Different Parts of Eight Lotus Seed Cultivars. Foods 2024; 13:2335. [PMID: 39123527 PMCID: PMC11311617 DOI: 10.3390/foods13152335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
In this study, "Honghu White Lotus", "Red Lotus (HH)", "Hunan Cunshan Lotus (CS)", "Wuyi Xuanlian", "Space Lotus 36", "Fujian Jianning White Lotus (JB)", "Jiangsu Yangzhou Lotus (JY)", and "Suzhou Dongshan Lotus" were selected as experimental subjects. The lotus seed flesh and lotus plumule of each cultivar were selected for nutritional quality and functional active substance analyses. Comparing different cultivars of lotus seeds, the protein and crude fat contents of JY flesh were the highest at 65.59 mg/g and 13%, respectively. The VC content of JB flesh and lotus plumule is the highest at 41.56 mg/g and 204.29 mg/g, respectively. JB flesh has the lowest soluble sugar content, at 17.87 mg/g, while HB's lotus plumule and flesh have the highest content, at 33.67 mg/g and 29.62 mg/g, respectively. There was no significant difference in the crude fat content of the flesh and lotus plumule among the eight cultivars. TK flesh and lotus plumule have the highest amylose content, at 23.67 mg/g and 76.81 mg/g, respectively. Among them, the total starch content of JB (476.17 mg/g) was relatively high, whereas its amylose content was only 26.09 mg/g. Lower amylose content makes it less prone to aging. The total phenolic and flavonoid contents of the JY lotus plumule were the highest, at 18.64 and 21.04 mg/g, respectively. The alkaloid content of CS, HH, and JY was relatively high at 20.01, 19.29, and 18.68 mg/g, respectively. These can provide a consultation for the estimation and processing of the nutritional quality of different lotus seeds.
Collapse
Affiliation(s)
- Xueting Liu
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
| | - Wanyu Dong
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
| | - Yang Yi
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Limei Wang
- School Biology & Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.W.); (H.W.)
| | - Wenfu Hou
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Youwei Ai
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongxun Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
- School Biology & Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.W.); (H.W.)
| | - Ting Min
- College of Food Science & Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (X.L.); (W.D.); (Y.Y.); (W.H.); (Y.A.)
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
3
|
Steiner D, Meyer A, Immohr LI, Pein-Hackelbusch M. Critical View on the Qualification of Electronic Tongues Regarding Their Performance in the Development of Peroral Drug Formulations with Bitter Ingredients. Pharmaceutics 2024; 16:658. [PMID: 38794320 PMCID: PMC11125162 DOI: 10.3390/pharmaceutics16050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
In this review, we aim to highlight the advantages, challenges, and limitations of electronic tongues (e-tongues) in pharmaceutical drug development. The authors, therefore, critically evaluated the performance of e-tongues regarding their qualification to assess peroral formulations containing bitter active pharmaceutical ingredients. A literature search using the keywords 'electronic', 'tongue', 'bitter', and 'drug' in a Web of Science search was therefore initially conducted. Reviewing the publications of the past decade, and further literature where necessary, allowed the authors to discuss whether and how e-tongues perform as expected and whether they have the potential to become a standard tool in drug development. Specifically highlighted are the expectations an e-tongue should meet. Further, a brief insight into the technologies of the utilized e-tongues is given. Reliable protocols were found that enable (i) the qualified performance of e-tongue instruments from an analytical perspective, (ii) proper taste-masking assessments, and (iii) under certain circumstances, the evaluation of bitterness.
Collapse
Affiliation(s)
- Denise Steiner
- Institute of Pharmaceutical Technology and Biopharmaceutics, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany;
| | - Alexander Meyer
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| | | | - Miriam Pein-Hackelbusch
- Institute for Life Science Technologies (ILT.NRW), Ostwestfalen-Lippe University of Applied Sciences and Arts, Campusallee 12, 32657 Lemgo, Germany
| |
Collapse
|
4
|
Mu Y, Zhao L, Shen L. Medication adherence and pharmaceutical design strategies for pediatric patients: An overview. Drug Discov Today 2023; 28:103766. [PMID: 37708932 DOI: 10.1016/j.drudis.2023.103766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/27/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Medication adherence in pediatric patients is a key factor in drug development and dosage form design. High medication adherence is not only important to achieve the expected treatment effects but can also effectively reduce medical costs. It is an ongoing task to accurately identify differences in medication adherence between children and adults and analyze the factors related to pediatric medication adherence. This is necessary to guide the development of pediatric drugs. This review focuses on factors that influence pediatric medication adherence as well as pharmaceutical design strategies to improve adherence. Current new dosage forms, new technologies, and new devices are comprehensively summarized in terms of their advantages and limitations.
Collapse
Affiliation(s)
- Yingying Mu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China
| | - Lijie Zhao
- Engineering Research Center of Modern Preparation Technology of Traditional Chinese Medicine of Ministry of Education, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China.
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, No. 1200, Cai-Lun Road, Pudong District, Shanghai 201203, PR China.
| |
Collapse
|
5
|
Yang J, Qiu M, Lu T, Yang S, Yu J, Lin J, Ma H, Guo Z, Chen Z, Han X, Zhang D. Discovery and verification of bitter components in Panax notoginseng based on the integrated strategy of pharmacophore model, system separation and bitter tracing technology. Food Chem 2023; 428:136716. [PMID: 37413835 DOI: 10.1016/j.foodchem.2023.136716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Panax notoginseng is a world-renowned tonic herb, which has been used as a characteristic food in Southwest China for hundreds of years. However, the taste of Panax notoginseng is extremely bitter and serious after tasting, and its bitter components are unknown. This manuscript proposes a new strategy for discovering bitter components of Panax notoginseng based on the integrated analysis of pharmacophore model, system separation and bitter tracing technology. Firstly, 16 potential bitter components were obtained by UPLC-Q-Orbitrap HRMS combined with virtual screening, most of which were saponins.Then, the bitter components were further separated by system component separation and 5 potential bitter components were obtained. Finally, the main contributors of bitterness in Panax notoginseng were verified to be Ginsenoside Rg1, Ginsenoside Rb1 and Ginsenoside Rd by components knock-in and fNIRS. In general, this paper is the first literature report on the relatively systematic study of bitter components in Panax notoginseng.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Min Qiu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Tai Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Shangdong Yang
- Department of Psychology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China
| | - Ji Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, PR China
| | - Hongyan Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Zhiping Guo
- Sichuan Houde Pharmaceutical Technology Co. Ltd., Chengdu 610041, PR China
| | - Zhencai Chen
- Department of Psychology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, PR China.
| | - Xue Han
- Chengdu Medical College, Chengdu 610500, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Pengzhou 611900, PR China.
| |
Collapse
|
6
|
Evaluation of deodorization techniques using cyclodextrins on the headspace volatiles and antioxidant properties of onion. Food Chem 2023; 410:135416. [PMID: 36652801 DOI: 10.1016/j.foodchem.2023.135416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Sulphur-containing volatiles in onion produce unpleasant odors and this limit their usage in foods. To expand its application, several additives including α-cyclodextrin (α-CD), β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and chitosan were added to onion solution and evaluated for their effect on sulphur-containing volatiles. Also, antioxidant property using 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay and oxidative stabilities in an oil-in-water (O/W) emulsion were carried out. The total volatile contents were decreased in the order of α-CD (50.1%), β-CD (49.3%), HP-β-CD (46.2%), and chitosan (7%). Meanwhile, HP-β-CD showed the highest DPPH radical scavenging ability followed by β-CD, α-CD, and chitosan with decreasing order. The β-CD significantly enhanced the oxidative stability of the O/W emulsion, whereas α-CD and β-HP-CD showed prooxidative behavior. Overall, β-CD might be used as a sulphur-containing volatile decreasing agent, which could keep the antioxidant properties of onion in the O/W emulsion.
Collapse
|