1
|
El-Sayed SAES, Rizk MA, Li H, Mohanta UK, Zafar I, Ji S, Ma Z, Do T, Li Y, Kondoh D, Jaroszewski J, Xuan X. Preassembled complexes of hAgo2 and ssRNA delivered by nanoparticles: a novel silencing gene expression approach overcoming the absence of the canonical pathway of siRNA processing in the apicomplexan parasite Babesia microti, blood parasite of veterinary and zoonotic importance. Emerg Microbes Infect 2025; 14:2438658. [PMID: 39648859 PMCID: PMC11721618 DOI: 10.1080/22221751.2024.2438658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Due to the lack of efficacy of the currently used chemical drugs, poor tick control, and lack of effective vaccines against Babesia, novel control strategies are urgently needed. In this regard, searching for anti-Babesia gene therapy may facilitate the control of this infection. Following this pattern, small interfering RNAs (siRNAs) are widely used to study gene function and hence open the way to control the parasite. However, the primary constraint of this approach is the lack of Babesia to RNA-induced silencing complex (RISC) enzymes, making siRNA impractical. In this study, we preassembled complexes with the human enzyme argonaute 2 (hAgo2) and a small interfering RNA (siRNA)/single-stranded RNA (ssRNA) against B. gibsoni and B. microti metabolite transporters. The assembled complexes were generated by developing a gene delivery system with chitosan dehydroascorbic acid nanoparticles. The delivery system effectively protected the loaded RNAi and targeted Babesia-infected RBCs with a relatively high internalization rate. The assembled complexes were successfully transfected into live parasites for specific slicing of Babesia targets. We demonstrated a reduction in the expression of target genes at the mRNA level. Furthermore, this silencing inhibited Babesia growth in vitro and in vivo. For the first time, we used this method to confirm the role of the assembled complexes in manipulating the noncanonical pathway of RNAi in Babesia parasites. This novel method provides a means of silencing Babesia genes to study their role in host-parasite interactions and as potential targets for gene therapy and control.
Collapse
Affiliation(s)
- Shimaa A. E-S. El-Sayed
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Rizk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Uday Kumar Mohanta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Iqra Zafar
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Livestock and Dairy Development Department, Veterinary Research Institute, Lahore, Pakistan
| | - Shengwei Ji
- Department of Veterinary Medicine, Agriculture College of Yanbian University, Yanji, People’s Republic of China
| | - Zhuowei Ma
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Thom Do
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yongchang Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jerzy Jaroszewski
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| |
Collapse
|
2
|
Gao M, Tang H, Zhu H. Advances in extraction, utilization, and development of chitin/chitosan and its derivatives from shrimp shell waste. Compr Rev Food Sci Food Saf 2024; 23:e70008. [PMID: 39223761 DOI: 10.1111/1541-4337.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Shrimp consumption is in great demand among the seafood used globally. However, this expansion has resulted in the substantial generation and disposal of shrimp shell waste. Through literature search, it has been observed that since 2020, global scholars have shown unprecedented interest in shrimp shell waste and its chitin/chitosan. However, these new insights lack corresponding and comprehensive summarization and analysis. Therefore, this article provides a detailed review of the extraction methods, applications, and the latest research developments on chitin/chitosan from shrimp shells, including micro-nano derivatives, from 2020 to the present. The results indicate that chemical extraction remains the primary technique for the extraction and preparation of chitin/chitosan from shrimp shells. With further refinement and development, adjusting parameters in the chemical extraction process or employing auxiliary techniques such as microwave and radiation enable the customization of target products with different characteristics (e.g., deacetylation degree, molecular weight, and degree of acetylation) according to specific needs. Additionally, in pursuit of environmentally friendly, efficient, and gentle extraction processes, recent research has shifted toward microbial fermentation and green solvent methods for chitin/chitosan extraction. Beyond the traditional antibacterial, film-forming, and encapsulation functionalities, research into the applications of chitosan in biomedical, food processing, new materials, water treatment, and adsorption fields is gradually deepening. Chitin/chitosan derivatives and their modified products have also been a focal point of research in recent years. However, with the rapid expansion, the future development of chitin/chitosan and its derivatives still faces challenges related to the unclear mechanism of action and the complexities associated with industrial scale-up.
Collapse
Affiliation(s)
- Mingyue Gao
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Hanqi Tang
- Personal Department, Shandong University, Qingdao, China
| | - Hongguang Zhu
- College of Life Sciences, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Martínez-Mejía G, Cuadras-Arconada R, Vázquez-Torres NA, Caro-Briones R, Castell-Rodríguez A, Del Río JM, Corea M, Jiménez-Juárez R. Synthesis of hydrogels from biomaterials and their potential application in tissue engineering. Carbohydr Res 2024; 543:109216. [PMID: 39043084 DOI: 10.1016/j.carres.2024.109216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
In this study, a series of hydrogels were synthesized from chitosan(s) that was crosslinking with glutaraldehyde at different concentrations. Ascorbic acid in an acidic medium was used to facilitate non-covalent interactions. The chitosan(s) was obtained from shrimp cytoskeleton; while ascorbic acid was extracted from xoconostle juice. The hydrogel reaction was monitored by UV-vis spectroscopy (550 nm) to determine the reaction kinetics and reaction order at 60 °C. The hydrogels structures were characterized by NMR, FT-IR, HR-MS and SEM, while the degree of cross-linking was examined with TGA-DA. The extracellular matrices were obtained as stable hydrogels where reached maximum crosslinking was of 7 %, independent of glutaraldehyde quantity added. The rheological properties showed a behavior of weak gels and a dependence of crosslinking agent concentration on strength at different temperatures. The cytotoxicity assay showed that the gels had no adverse effects on cellular growth for all concentrations of glutaraldehyde.
Collapse
Affiliation(s)
- Gabriela Martínez-Mejía
- Laboratorio de Investigación en Polímeros y Nanomateriales, Instituto Politécnico Nacional, UPALM, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio Z-5, PB, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Ricardo Cuadras-Arconada
- Departamento de Química Orgánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Alcaldía Miguel Hidalgo, CP 11340, Ciudad de México, Mexico
| | - Nadia Adriana Vázquez-Torres
- Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Facultad de Medicina, Circuito Interior, Ciudad Universitaria, Av. Universidad3000, C.P. 04510, Ciudad de México, Mexico
| | - Rubén Caro-Briones
- Laboratorio de Investigación en Polímeros y Nanomateriales, Instituto Politécnico Nacional, UPALM, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio Z-5, PB, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico; Departamento de Mecánica, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, UPALM, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Andrés Castell-Rodríguez
- Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Facultad de Medicina, Circuito Interior, Ciudad Universitaria, Av. Universidad3000, C.P. 04510, Ciudad de México, Mexico
| | - José Manuel Del Río
- Departamento de Metalurgia y Materiales, Instituto Politécnico Nacional, Escuela Superior de Ingeniería Química e Industrias Extractivas, UPALM, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico
| | - Mónica Corea
- Laboratorio de Investigación en Polímeros y Nanomateriales, Instituto Politécnico Nacional, UPALM, Escuela Superior de Ingeniería Química e Industrias Extractivas, Edificio Z-5, PB, San Pedro Zacatenco, Alcaldía Gustavo A. Madero, CP 07738, Ciudad de México, Mexico.
| | - Rogelio Jiménez-Juárez
- Departamento de Química Orgánica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Prolongación de Carpio y Plan de Ayala s/n, Alcaldía Miguel Hidalgo, CP 11340, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Niziołek K, Słota D, Sobczak-Kupiec A. Polysaccharide-Based Composite Systems in Bone Tissue Engineering: A Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4220. [PMID: 39274610 PMCID: PMC11396420 DOI: 10.3390/ma17174220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 09/16/2024]
Abstract
In recent years, a growing demand for biomaterials has been observed, particularly for applications in bone regenerative medicine. Bone tissue engineering (BTE) aims to develop innovative materials and strategies for repairing and regenerating bone defects and injuries. Polysaccharides, due to their biocompatibility, biodegradability as well as bioactivity, have emerged as promising candidates for scaffolds or composite systems in BTE. Polymers combined with bioactive ceramics can support osteointegration. Calcium phosphate (CaP) ceramics can be a broad choice as an inorganic phase that stimulates the formation of new apatite layers. This review provides a comprehensive analysis of composite systems based on selected polysaccharides used in bone tissue engineering, highlighting their synthesis, properties and applications. Moreover, the applicability of the produced biocomposites has been analyzed, as well as new trends in modifying biomaterials and endowing them with new functionalizations. The effects of these composites on the mechanical properties, biocompatibility and osteoconductivity were critically analyzed. This article summarizes the latest manufacturing methods as well as new developments in polysaccharide-based biomaterials for bone and cartilage regeneration applications.
Collapse
Affiliation(s)
- Karina Niziołek
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Dagmara Słota
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Agnieszka Sobczak-Kupiec
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
5
|
Fadhila DN, Ridwan AZ, Amir NA, Abdillah A, Kartini N R, H H, Djamaluddin N. Mechanical properties and formulation of hydrophilic fiber and shrimp shell combination as a novel eco-friendly dental restoration material. Heliyon 2024; 10:e34180. [PMID: 39114082 PMCID: PMC11305253 DOI: 10.1016/j.heliyon.2024.e34180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
This study evaluates the mechanical properties and formulation of dental restoration material comprised of cellulose acetate (CA) from water hyacinth and chitosan (C) from white shrimp shells. The research phases included extraction, formulation, functional group testing, antibacterial, toxicity, water absorption and solubility, compressive, shear, tensile, hardness, microleakage, thermal expansion, and shrinkage. The experimental data were analyzed using probit regression, one-way ANOVA, and Kruskal-Wallis test. The data showed that CA and C had microxyl and amine groups, could inhibit S. mutans, and were non-toxic. Composite resins were divided into nine formulations with different concentrations: F1 (1 % CA + 3 % C), F2 (1 % CA + 5 % C), F3 (1 % CA + 7 % C), F4 (3 % CA + 3 % C), F5 (3 % CA + 5 % C), F6 (3 % CA + 7 % C), F7 (5 % CA + 3 % C), F8 (5 % CA + 5 % C), and F9 (5 % CA + 7 % C). The F9 has mechanical strength close to the control group, with 113.33 μg/mm3 absorption, 80 μg/mm3 solubility, 32.67 Mpa compressive strength, 17.18 Mpa tensile strength, and no shrinkage. It shows that F9 has potential as an eco-friendly dental filling material. The present study completed the development of a formulation for a restoration material by combining water hyacinth fiber and shrimp skin chitosan. The outcomes of a comparative analysis of the mechanical properties of synthetic composite resins and water hyacinth fiber composites containing shrimp skin chitosan revealed that the F9 formulation (CA 5 % + C 7 %) exhibited the following fiber: absorption, compressive strength, tensile strength, hardness, and thermal expansion.
Collapse
Affiliation(s)
- Dewi Nur Fadhila
- Dental Education Study Program, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Alisha Zafirah Ridwan
- Dental Education Study Program, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Nur Aqilah Amir
- Dental Education Study Program, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Andi Abdillah
- Dental Education Study Program, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Ratih Kartini N
- Pharmacy Study Program, Faculty of Pharmacy, Hasanuddin University, Indonesia
| | - Hasanuddin H
- Department of Dental Public Health and Preventive Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia
| | - Nursyamsi Djamaluddin
- Department of Dental Public Health and Preventive Dentistry, Faculty of Dentistry, Hasanuddin University, Indonesia
| |
Collapse
|
6
|
Lee H, Kim J, Myung S, Jung TG, Han DW, Kim B, Lee JC. Extraction of γ-chitosan from insects and fabrication of PVA/γ-chitosan/kaolin nanofiber wound dressings with hemostatic properties. DISCOVER NANO 2024; 19:77. [PMID: 38693438 PMCID: PMC11063014 DOI: 10.1186/s11671-024-04016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
A nanofiber-based composite nonwoven fabric was fabricated for hemostatic wound dressing, integrating polyvinyl alcohol (PVA), kaolin, and γ-chitosan extracted from three type of insects. The γ-chitosan extracted from Protaetia brevitarsis seulensis exhibited the highest yield at 21.5%, and demonstrated the highest moisture-binding capacity at 535.6%. In the fabrication process of PVA/kaolin/γ-chitosan nonwoven fabrics, an electrospinning technique with needle-less and mobile spinneret was utilized, producing nanofibers with average diameters ranging from 172 to 277 nm. The PVA/kaolin/γ-chitosan nonwoven fabrics demonstrated enhanced biocompatibility, with cell survival rates under certain compositions reaching up to 86.9% (compared to 74.2% for PVA). Furthermore, the optimized fabric compositions reduced blood coagulation time by approximately 2.5-fold compared to PVA alone, highlighting their efficacy in hemostasis. In other words, the produced PVA/kaolin/γ-chitosan nonwoven fabrics offer potential applications as hemostatic wound dressings with excellent biocompatibility and improved hemostatic performance.
Collapse
Affiliation(s)
- Hakyong Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jinkyeong Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Suwan Myung
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Tae-Gon Jung
- Medical Device Development Center, Osong Medical Innovation Foundation, Chungju, 28160, Republic of Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Bongju Kim
- Dental Life Science Research Institute, Seoul National University Dental Hospital, Seoul, 03080, Republic of Korea.
| | - Jae-Chang Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| |
Collapse
|
7
|
Isa MT, Abdulkarim AY, Bello A, Bello TK, Adamu Y. Synthesis and characterization of chitosan for medical applications: A review. J Biomater Appl 2024; 38:1036-1057. [PMID: 38553786 DOI: 10.1177/08853282241243010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Chitosan has gained considerable recognition within the field of medical applications due to its exceptional biocompatibility and diverse range of properties. Nevertheless, prior reviews have primarily focused on its applications, offering limited insights into its source materials. Hence, there arises a compelling need for a comprehensive review that encompasses the entire chitin and chitosan life cycle: from the source of chitin and chitosan, extraction methods, and specific medical applications, to the various techniques employed in evaluating chitosan's properties. This all-encompassing review delves into the critical aspects of chitin and chitosan extraction, with a strong emphasis on the utilization of natural raw materials. It elucidates the various sources of these raw materials, highlighting their abundance and accessibility. Furthermore, a meticulous examination of extraction methods reveals the prevalent use of hydrochloric acid (HCl) in the demineralization process, alongside citric, formic, and phosphoric acids. Based on current review information, these acids constitute a substantial 69.2% of utilization, surpassing other mentioned acids. Of notable importance, the review underscores the essential parameters for medical-grade chitosan. It advocates for a degree of deacetylation (DDA) falling within the range of 85%-95%, minimal protein content <1%, ash content <2%, and moisture content <10%. In conclusion, these crucial factors contribute to the understanding of Chitosan's production for medical applications, paving the way for advancements in biomedical research and development.
Collapse
Affiliation(s)
| | | | - Abdullahi Bello
- Bioresources Development Unit, National Biotechnology Research and Development Agency, Abuja, Nigeria
- Bioproduction Department, Bioresources Development Centre, Ilorin, Nigeria
| | | | - Yusuf Adamu
- Department of Chemical Engineering, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
8
|
El-araby A, Janati W, Ullah R, Uddin N, Bari A. Antifungal efficacy of chitosan extracted from shrimp shell on strawberry ( Fragaria × ananassa) postharvest spoilage fungi. Heliyon 2024; 10:e29286. [PMID: 38617969 PMCID: PMC11015463 DOI: 10.1016/j.heliyon.2024.e29286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/07/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024] Open
Abstract
The strong demand for biological materials in the food industry places chitosan at the forefront of other biopolymers. The present study aims to evaluate the antifungal properties of chitosan extracted from shrimp shell waste (Parapenaeus longirostris) against post-harvest strawberry (Fragaria × ananassa) spoilage fungi. The physicochemical characteristics (DD, Mw, and solubility) of extracted chitosan were determined. In addition, functional characteristics were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The antifungal effect of chitosan on mycelial growth and spore germination of Aspergillus niger, Botrytis cinerea, Fusarium oxysporum, and Rhizopus stolonifer was evaluated. Yield, degree of deacetylation, molecular weight, and solubility were 21.86%, 83.50%, 180 kDa, and 80.10%, respectively. A degree of deacetylation of 81.27% was calculated from the FTIR spectrum and a crystallinity index of 79.83% was determined from the X-ray diffraction pattern. SEM images of extracted chitosan showed a combination of fibrous and porous structure. At 3% chitosan, mycelial growth inhibition rates of A. niger, B. cinerea, F. oxysporum, and R. stolonifer ranged from 81.37% to 92.70%. At the same chitosan concentration, the percentages of spore germination inhibition of the isolated fungi ranged from 65.47% to 71.48%. The antifungal activity was highly dose-dependent. As a natural polymer, chitosan offers a convincing alternative to synthetic antimicrobials for the post-harvest preservation of strawberries. Its potential lies in its ability to inhibit the growth of spoilage fungi.
Collapse
Affiliation(s)
- Abir El-araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, 30050, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, 30050, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ahmed Bari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
9
|
El-Araby A, Janati W, Ullah R, Ercisli S, Errachidi F. Chitosan, chitosan derivatives, and chitosan-based nanocomposites: eco-friendly materials for advanced applications (a review). Front Chem 2024; 11:1327426. [PMID: 38239928 PMCID: PMC10794439 DOI: 10.3389/fchem.2023.1327426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
For many years, chitosan has been widely regarded as a promising eco-friendly polymer thanks to its renewability, biocompatibility, biodegradability, non-toxicity, and ease of modification, giving it enormous potential for future development. As a cationic polysaccharide, chitosan exhibits specific physicochemical, biological, and mechanical properties that depend on factors such as its molecular weight and degree of deacetylation. Recently, there has been renewed interest surrounding chitosan derivatives and chitosan-based nanocomposites. This heightened attention is driven by the pursuit of enhancing efficiency and expanding the spectrum of chitosan applications. Chitosan's adaptability and unique properties make it a game-changer, promising significant contributions to industries ranging from healthcare to environmental remediation. This review presents an up-to-date overview of chitosan production sources and extraction methods, focusing on chitosan's physicochemical properties, including molecular weight, degree of deacetylation and solubility, as well as its antibacterial, antifungal and antioxidant activities. In addition, we highlight the advantages of chitosan derivatives and biopolymer modification methods, with recent advances in the preparation of chitosan-based nanocomposites. Finally, the versatile applications of chitosan, whether in its native state, derived or incorporated into nanocomposites in various fields, such as the food industry, agriculture, the cosmetics industry, the pharmaceutical industry, medicine, and wastewater treatment, were discussed.
Collapse
Affiliation(s)
- Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Walid Janati
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Riaz Ullah
- Medicinal Aromatic and Poisonous Plants Research Centre, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Horticulture, Ataturk University, Erzurum, Türkiye
- HGF Agro, Ata Teknokent, Erzurum, Türkiye
| | - Faouzi Errachidi
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
10
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Review on nanocomposite materials from cellulose, chitosan, alginate, and lignin for removal and recovery of nutrients from wastewater. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023; 6:100386. [DOI: 10.1016/j.carpta.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
|
11
|
Ahmed AM, Mekonnen ML, Mekonnen KN. REVIEW ON NANOCOMPOSITE MATERIALS FROM CELLULOSE, CHITOSAN, ALGINATE, AND LIGNIN FOR REMOVAL AND RECOVERY OF NUTRIENTS FROM WASTEWATER. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023:100386. [DOI: https:/doi.org/10.1016/j.carpta.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
|
12
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Polymer-based nanocomposite adsorbents for resource recovery from wastewater. RSC Adv 2023; 13:31687-31703. [PMID: 37908667 PMCID: PMC10613956 DOI: 10.1039/d3ra05453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
Developing mitigation mechanisms for eutrophication caused by the uncontrolled release of nutrients is in the interest of the scientific community. Adsorption, being operationally simple and economical with no significant secondary pollution, has proven to be a feasible technology for resource recovery. However, the utility of adsorption often lies in the availability of effective adsorbents. In this regard, polymer-based nanocomposite (PNC) adsorbents have been highly acclaimed by researchers because of their high surface area, multiple functional groups, biodegradability, and ease of large-scale production. This review paper elaborates on the functionality, adsorption mechanisms, and factors that affect the adsorption and adsorption-desorption cycles of PNC adsorbents toward nutrient resources. Moreover, this review gives insight into the application of recovered nutrient resources in soil amendment.
Collapse
Affiliation(s)
- Aminat Mohammed Ahmed
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Department of Chemistry, College of Natural Sciences, Wollo University P.O. Box 1145, Dessie Ethiopia
| | - Menbere Leul Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University P.O. Box 16417 Addis Ababa Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University P.O. Box 231 Mekelle Ethiopia
| |
Collapse
|
13
|
Namli S, Guven O, Simsek FN, Gradišek A, Sumnu G, Yener ME, Oztop M. Effects of deacetylation degree of chitosan on the structure of aerogels. Int J Biol Macromol 2023; 250:126123. [PMID: 37543264 DOI: 10.1016/j.ijbiomac.2023.126123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/10/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Chitosan aerogels, obtained by (supercritical) CO2 drying of hydrogels, are novel adsorbents because of their large surface area and high porosity. Intrinsic properties of chitosan such as molecular weight (MW) and degree of deacetylation (DDA) had large impacts on the characteristics of chitosan aerogels. Although there are a few studies about the effects of solely DDA or MW on aerogel structure, none of them has focused on the mutual effects. The study aims to investigate the combined effects of MW and DDA of chitosan on aerogel properties. Hydrogels were produced in beads form by physical gelation of the chitosan solutions (2 % w/v in acetic acid of 1 %, v/v) in an alkaline environment (NaOH, 4 N). Supercritical CO2 dried aerogels were examined with respect to the bulk density, diameter as well as pore characteristics, and surface area by Barrett-Joyner-Halenda (BJH) and Brunauer-Emmett-Teller (BET) methods, respectively. Morphologies of aerogels were also examined by Scanning Electron Microscopy (SEM) images and structural changes of aerogels were observed by Fourier Transform Infrared (FTIR) Spectroscopy. Additional to BET-BJH analysis, proton relaxation dispersion was measured by Fast Field Cycling NMR (FFC-NMR) to determine the pore volume of the aerogels. Compact structures were obtained for higher MW chitosan and lower MW chitosans with higher DDA increasing the aerogel diameters. All types of aerogels obtained by different chitosan characteristics (MW and DDA) showed a porous structure and the highest DDA with the lowest MW caused the minimum bulk density with the highest water absorption rate. Although different N2 adsorption-desorption profiles were obtained in terms of pore volumes; all aerogels had Type IV isotherms with Type H1 hysteresis curve. FFC-NMR experiments showed that the coherence length values were associated with the pore volumes and FFC-NMR experiments were found to be meaningful as supportive experiments for the characterization of aerogels.
Collapse
Affiliation(s)
- Serap Namli
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey.
| | - Ozge Guven
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey.
| | - Feyza Nur Simsek
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey.
| | - Anton Gradišek
- Jozef Stefan Institute, Department of Solid State Physics and Department of Intelligent Systems, Jamova cesta 39, SI-1000 Ljubljana, Slovenia.
| | - Gulum Sumnu
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey.
| | - Meryem Esra Yener
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey.
| | - Mecit Oztop
- Middle East Technical University, Department of Food Engineering, Ankara, Turkey.
| |
Collapse
|
14
|
Abdel-Raouf MS, Farag RK, Farag AA, Keshawy M, Abdel-Aziz A, Hasan A. Optimization, Kinetics, and Isotherm Studies of Methyl Thioninium Chloride Removal from Simulated Solutions Using Chitosan Derivatives. ACS OMEGA 2023; 8:33580-33592. [PMID: 37744862 PMCID: PMC10515362 DOI: 10.1021/acsomega.3c03735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Methylene blue (MB) dye or methyl thioninium chloride is one of the hazardous cationic dyes that are discharged into the textile effluent causing a highly negative environmental impact. The present work targets the investigation of the adsorption performance of some chitosan-modified products toward the MB dye from simulated solutions. The claimed chitosan derivatives were prepared, characterized, and applied for the removal of lead and copper cations from an aqueous medium in a previous work. These include: N,O-carboxymethyl chitosan (N,O-CM/Cs), chitosan grafted with glutaraldehyde (Cs/GA), chitosan cross-linked with GA/epichlorohydrin (Cs/GA/ECH), and chitosan cross-linked with glutaraldehyde/methylene bis(acrylamide) (Cs/GA/MBA). The modified chitosan derivatives in this study displayed outstanding mechanical qualities, exceptional reusability, and a significant amount of adsorption capacity. The ability of prepared Cs derivatives to eradicate MB was as follows: N,O-CM/Cs (95.1 mg/g) < Cs/GA (120.1 mg/g) < Cs/GA/ECH (220.1 mg/g) < Cs/GA/MBA (270.0 mg/g). The swelling performance of the prepared sorbents was verified under different experimental conditions, and the data revealed that the maximum swelling was attained at pH = 9, temperature 55 °C, and after 24 h. The produced Cs derivatives showed exceptional reusability by maintaining higher adsorption effectiveness throughout five cycles. The MB dye was adsorbed onto the modified derivatives according to pseudo-second-order kinetics and the Langmuir model. Moreover, the adsorption process was monitored via atomic force microscopy to verify the differences between the dye-free and dye-loaded adsorbents.
Collapse
Affiliation(s)
| | - Reem Kamal Farag
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| | - Ahmed A. Farag
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| | - Mohamed Keshawy
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| | - Alaa Abdel-Aziz
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| | - Abdulraheim Hasan
- Egyptian Petroleum Research Institute, 1 Ahmed El-Zomor, Nasr City 11727, Cairo, Egypt
| |
Collapse
|
15
|
Thambiliyagodage C, Jayanetti M, Mendis A, Ekanayake G, Liyanaarachchi H, Vigneswaran S. Recent Advances in Chitosan-Based Applications-A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2073. [PMID: 36903188 PMCID: PMC10004736 DOI: 10.3390/ma16052073] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 05/31/2023]
Abstract
Chitosan derived from chitin gas gathered much interest as a biopolymer due to its known and possible broad applications. Chitin is a nitrogen-enriched polymer abundantly present in the exoskeletons of arthropods, cell walls of fungi, green algae, and microorganisms, radulae and beaks of molluscs and cephalopods, etc. Chitosan is a promising candidate for a wide variety of applications due to its macromolecular structure and its unique biological and physiological properties, including solubility, biocompatibility, biodegradability, and reactivity. Chitosan and its derivatives have been known to be applicable in medicine, pharmaceuticals, food, cosmetics, agriculture, the textile and paper industries, the energy industry, and industrial sustainability. More specifically, their use in drug delivery, dentistry, ophthalmology, wound dressing, cell encapsulation, bioimaging, tissue engineering, food packaging, gelling and coating, food additives and preservatives, active biopolymeric nanofilms, nutraceuticals, skin and hair care, preventing abiotic stress in flora, increasing water availability in plants, controlled release fertilizers, dye-sensitised solar cells, wastewater and sludge treatment, and metal extraction. The merits and demerits associated with the use of chitosan derivatives in the above applications are elucidated, and finally, the key challenges and future perspectives are discussed in detail.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Amavin Mendis
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Geethma Ekanayake
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Heshan Liyanaarachchi
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty of Engineering and Information Technology, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
- Faculty of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
16
|
Ahmed AM, Mekonnen ML, Mekonnen KN. Polymer-based nanocomposite adsorbents for resource recovery from wastewater. RSC Adv 2023; 13:31687-31703. [DOI: https:/doi.org/10.1039/d3ra05453e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023] Open
Abstract
Adsorption is alternative technique for recovery of nutrient resources with no/less secondary pollution. PNC adsorbents are effective for removal and recovery of nutrient resources, and reusing nutrients as fertilizer could prevent eutrophication.
Collapse
Affiliation(s)
- Aminat Mohammed Ahmed
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural Sciences, Wollo University, P.O. Box 1145, Dessie, Ethiopia
| | - Menbere Leul Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
| | - Kebede Nigussie Mekonnen
- Department of Industrial Chemistry, College of Natural and Applied Sciences, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Nanotechnology Centre of Excellence, Addis Ababa Science and Technology University, P.O. Box 16417, Addis Ababa, Ethiopia
- Department of Chemistry, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia
| |
Collapse
|