1
|
Chauhan S, Tiwari A, Verma A, Padhan PK, Verma S, Gupta PC. Exploring the Potential of Saffron as a Therapeutic Agent in Depression Treatment: A Comparative Review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2024; 97:365-381. [PMID: 39351321 PMCID: PMC11426294 DOI: 10.59249/xurf4540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Depression is a significant mental health challenge globally. While traditional antidepressants are effective, they often have unwanted side effects. Saffron, a natural spice derived from Crocus sativus L., has emerged as a potential alternative therapy for depression. Researchers have found that its components such as crocin, crocetin, and safranal have been found to mitigate depressive symptoms through neurotransmitter regulation, anti-inflammatory effects, and neuroprotection. Clinical trials suggest that the effectiveness of saffron in treating mild to moderate depression is comparable to that of standard medications, and animal studies support these results, showing behavioral improvements with saffron treatment. Saffron is particularly appealing due to its safety and lower incidence of side effects, making it suitable for those sensitive to conventional drugs. Additionally, its antioxidant properties may offer further health benefits. However, challenges such as determining the appropriate dosage, prohibitive cost, and the limited availability of quality saffron need to be addressed. Most research on saffron's efficacy is short-term; thus, long-term studies are essential to understand its full therapeutic potential and ongoing antidepressant effects. While saffron is safe in terms of its culinary value, higher therapeutic doses require careful monitoring for drug interactions and side effects. In summary, saffron represents a promising direction in depression treatment, with benefits potentially matching those of standard treatments and a better safety profile. However, further research is necessary to establish clear guidelines for its use, optimize dosing, and assess long-term outcomes. Saffron offers a natural treatment path for depression, but its use must be controlled and supported by scientific evidence.
Collapse
Affiliation(s)
- Satendra Chauhan
- School of Pharmaceutical Science, Chhatrapati Shahu Ji
Maharaj University, Kanpur, India
| | - Aarohi Tiwari
- School of Pharmaceutical Science, Chhatrapati Shahu Ji
Maharaj University, Kanpur, India
| | - Ashish Verma
- School of Pharmaceutical Science, Chhatrapati Shahu Ji
Maharaj University, Kanpur, India
| | - Pratyush Kumar Padhan
- Division of Neuroscience and Aging Biology,
CSIR-Central Drug Research Institute, Lucknow, India
| | - Shivam Verma
- School of Pharmaceutical Science, Chhatrapati Shahu Ji
Maharaj University, Kanpur, India
| | - Prakash Chandra Gupta
- School of Pharmaceutical Science, Chhatrapati Shahu Ji
Maharaj University, Kanpur, India
| |
Collapse
|
2
|
Gao J, Song W, Tang X, Liu Y, Miao M. Feruloyl Glyceride Mitigates Tomato Postharvest Rot by Inhibiting Penicillium expansum Spore Germination and Enhancing Suberin Accumulation. Foods 2024; 13:1147. [PMID: 38672820 PMCID: PMC11049243 DOI: 10.3390/foods13081147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Postharvest rot, caused by Penicillium expansum, in tomatoes poses significant economic and health risks. Traditional control methods, such as the use of fungicides, raise concerns about pathogen resistance, food safety, and environmental impact. In search of sustainable alternatives, plant secondary metabolites, particularly phenolic compounds and their derivatives, have emerged as promising natural antimicrobials. Among these, feruloyl glyceride (FG), a water-soluble derivative of ferulic acid, stands out due to its antioxidant properties, antibacterial properties, and improved solubility. In this study, we provide evidence demonstrating FG is capable of inhibiting the spore germination of P. expansum and effectively reducing the incidence rate of Penicillium rot of tomatoes, without compromising quality. Electron microscopy observations combined with metabolite and transcriptomic analyses revealed that FG treatments resulted in enhanced suberin accumulation through promoting the expression of suberin synthesis related genes and, consequently, inhibited the growth and expansion of P. expansum on the fruits. This work sheds light on the mechanisms underlying FG's inhibitory effects, allowing its potential application as a natural and safe alternative to replace chemical fungicides for postharvest preservation.
Collapse
Affiliation(s)
- Jieyu Gao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Wu Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Xiaofeng Tang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| | - Yongsheng Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Min Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (J.G.); (W.S.); (X.T.)
| |
Collapse
|
3
|
Qi C, Zhang H, Chen W, Liu W. Curcumin: An innovative approach for postharvest control of Alternaria alternata induced black rot in cherry tomatoes. Fungal Biol 2024; 128:1691-1697. [PMID: 38575242 DOI: 10.1016/j.funbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Curcumin, a natural bioactive compound derived from Curcuma longa, has been widely recognized for its antifungal properties. In this study, we investigated the effects of curcumin on the phytopathogenic fungus Alternaria alternata and its pathogenicity in cherry tomato fruit. The results demonstrated that curcumin treatment significantly inhibited mycelial growth and spore germination of A. alternata in a dose-dependent manner. Scanning electron microscopy revealed alterations in the morphology of A. alternata mycelia treated with curcumin. Furthermore, curcumin treatment led to an increase in malondialdehyde and hydrogen peroxide contents, indicating cell membrane damage in A. alternata. Moreover, curcumin exhibited a remarkable inhibitory effect on the incidence and lesion diameters of black rot caused by A. alternata in cherry tomato fruit. Gene expression analysis revealed upregulation of defense-related genes (POD, SOD, and CAT) in tomato fruit treated with curcumin. Additionally, curcumin treatment resulted in decreased activity of exocellular pathogenic enzymes (polygalacturonase, pectin lyase, and endo-1,4-β-d-glucanase) in A. alternata. Overall, our findings highlight the potential of curcumin as an effective antifungal agent against A. alternata, providing insights into its inhibitory mechanisms on mycelial growth, spore germination, and pathogenicity in cherry tomato fruit.
Collapse
Affiliation(s)
- Chenchen Qi
- College of Economics and Management, Xinjiang Agricultural University, Urumqi, 830000, PR China.
| | - Haijing Zhang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Wei Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing, 100048, PR China.
| | - Weizhong Liu
- College of Economics and Management, Xinjiang Agricultural University, Urumqi, 830000, PR China.
| |
Collapse
|
4
|
Kausar R, Nishiuchi T, Komatsu S. Proteomic and molecular analyses to understand the promotive effect of safranal on soybean growth under salt stress. J Proteomics 2024; 294:105072. [PMID: 38218428 DOI: 10.1016/j.jprot.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Safranal is a free radical scavenger and useful as an antioxidant molecule; however, its promotive role in soybean is not explored. Salt stress decreased soybean growth and safranal improved it even if under salt stress. To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking. SIGNIFICANCE: To study the positive mechanism of safranal on soybean growth, a proteomic approach was used. According to functional categorization, oppositely changed proteins were further confirmed using biochemical techniques. Actin and calcium-dependent protein kinase decreased in soybean root and hypocotyl, respectively, under salt stress and increased with safranal application. Xyloglucan endotransglucosylase/ hydrolase increased in soybean root under salt stress but decreased with safranal application. Peroxidase increased under salt stress and further enhanced by safranal application in soybean root. Actin, RuvB-like helicase, and protein kinase domain-containing protein were upregulated under salt stress and further enhanced by safranal application under salt stress. Dynamin GTPase was downregulated under salt stress but recovered with safranal application under salt stress. Glutathione peroxidase and PfkB domain-containing protein were upregulated by safranal application under salt stress in soybean root. These results suggest that safranal improves soybean growth through the regulation of cell wall and nuclear proteins along with reactive‑oxygen species scavenging system. Furthermore, it might promote salt-stress tolerance through the regulation of membrane proteins involved in endocytosis and post-Golgi trafficking.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Takumi Nishiuchi
- Research Center for Experimental Modeling of Human Disease, Kanazawa University, Kanazawa 920-8640, Japan
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
5
|
Bhagat N, Vakhlu J. Effects of biocontrol Bacillus sp. strain D5 on the pathogenic Fusarium oxysporum R1 at the microscopic and molecular level in Crocus sativus L. (saffron) corm. FEMS MICROBES 2024; 5:xtad025. [PMID: 38250179 PMCID: PMC10799715 DOI: 10.1093/femsmc/xtad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/27/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Corm rot of saffron caused by Fusarium oxysporum is a major threat to saffron cultivation the world over. To minimize the ill effects of chemical fungicides, attention has been shifted to the use of biocontrol agents for disease management in a sustainable way. In saffron, various biocontrol agents against corm rot disease have been reported and characterized but no study has been done so far to understand their interaction at the molecular level. The present study was conducted to unravel the mechanism of action of an already characterized native biocontrol agent i.e. Bacillus sp. strain D5 (Bar D5) against F. oxsporum R1 (Fox R1) in the saffron corm. The growth inhibition of Fox R1 was observed in vitro and in planta (saffron corm) by real time imaging. Bacillus sp. strain D5 reduced Fox R1 load in infected corms by 50% as quantified by q-PCR and the colony-forming unit method. Comparative transcriptome analysis revealed upregulation and downregulation of various Fox R1 genes in presence of Bar D5. The genes related to carbon metabolism, cell wall and membrane synthesis, and growth of Fox R1 were significantly downregulated in Bar D5-primed and Fox R1-inoculated corms as compared to only Fox R1-inoculated corms.
Collapse
Affiliation(s)
- Nancy Bhagat
- Metagenomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| | - Jyoti Vakhlu
- Metagenomics Laboratory, School of Biotechnology, University of Jammu, Jammu, 180006, Jammu and Kashmir, India
| |
Collapse
|
6
|
Flavonoid Composition and Antibacterial Properties of Crocus sativus L. Petal Extracts. Molecules 2022; 28:molecules28010186. [PMID: 36615378 PMCID: PMC9822159 DOI: 10.3390/molecules28010186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Saffron petals, which are the main by-products of Crocus sativus L. (Iridaceae family), are produced in large quantities and are known for their many beneficial properties. In this regard, this study aims to investigate the phenolic composition and antibacterial properties of hydroethanolic extracts from Crocus sativus L. petals collected from Serghina (province of Boulmane) in Morocco. The phenolic profiles were characterized using high-performance liquid chromatography coupled to a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antibacterial potential was evaluated against four bacterial strains potentially causing food-borne disease (Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes) using disc diffusion and broth micro-dilution assays. Results showed that a total of 27 phenolic compounds was detected in the Crocus sativus L. petal extracts, which were assigned to flavonoids (kaempferol, quercetin, isorhamnetin, and myricetin derivatives). The most abundant compound was represented by kaempferol-sophoroside isomer (20.82 mg/g ± 0.152), followed by kaempferol-sophoroside-hexoside (2.63 mg/g ± 0.001). The hydroethanolic extracts of Crocus sativus L. petals demonstrated bactericidal effects against Staphylococcus aureus and Listeria monocetogenes and bacteriostatic effects against Escherichia coli and Salmonella typhimurium. Therefore, the by-product Crocus sativus L. petal extracts might be considered as valuable sources of natural antibacterial agents with potential applications in the food and pharmaceutical industries.
Collapse
|