1
|
Chen HT, Yuan XY, Wang ZY, Fan D, Luo XM, Yang JH, Ma YX, Liu J, Wang X, Wang ZM. Induction of apoptosis by oridonin in nonfunctioning pituitary adenoma cells. Drug Dev Res 2024; 85:e22251. [PMID: 39188035 DOI: 10.1002/ddr.22251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
Nonfunctioning pituitary adenoma (NFPA) is one of the major subtypes of pituitary adenomas (PA) and its primary treatment is surgical resection. However, normal surgery fails to remove lesions completely and there remains in lack of frontline treatment, so the development of new drugs for NFPA is no doubt urgent. Oridonin (ORI) has been reported to have antitumor effects on a variety of tumors, but whether it could exhibit the same effect on NFPA requires to be further investigated. The effects of ORI on pituitary-derived folliculostellate cell line (PDFS) cell viability, colony formation, proliferation ability, migration, and invasion were examined by Cell Counting Kit-8, colony formation assay, 5‑Ethynyl‑2'‑deoxyuridine proliferation assay, wound-healing assay, and Transwell assay. The differentially expressed genes in the control and ORI-treated groups were screened by transcriptome sequencing analysis and analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment. Cell cycle analysis was performed to detect changes in cell cycle. Annexin V-fluorescein isothiocyanate/propidium iodide staining was performed to detect apoptosis in ORI-treated cells. Western blot assay was performed to detect Bax, Bcl-2, and cleaved Caspase-3 protein expression. ORI inhibited PDFS cell viability and significantly suppressed cell proliferation, migration, and invasion. GO and KEGG results showed that ORI was associated with signaling pathways such as cell cycle and apoptosis in PDFS cells. In addition, ORI blocked cells in G2/M phase and induced apoptosis in PDFS cells. ORI can trigger cell cycle disruption and apoptosis collaboratively in PDFS cells, making it a promising and effective agent for NFPA therapy.
Collapse
Affiliation(s)
- Hui-Tong Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing-Yi Yuan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhong-Yu Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Dong Fan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiong-Ming Luo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of LifeSciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Marine Pharmacy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun-Hua Yang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yu-Xin Ma
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zong-Ming Wang
- Pituitary Tumor Center, Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
YANG XUEGANG, XIANG XIANHONG, XU GUOHUI, ZHOU SHI, AN TIANZHI, HUANG ZHI. Silencing of peroxiredoxin 2 suppresses proliferation and Wnt/β-catenin pathway, and induces senescence in hepatocellular carcinoma. Oncol Res 2023; 32:213-226. [PMID: 38188679 PMCID: PMC10767235 DOI: 10.32604/or.2023.030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/03/2023] [Indexed: 01/09/2024] Open
Abstract
Hepatocellular carcinoma (HCC), a common malignancy worldwide, still lacks effective clinical treatment. The study aimed to investigate the oncogenes that affect the progression of HCC and their possible mechanisms. In our study, we initially confirmed a higher level of PRDX2 in the bile of HCC patients compared to those with choledocholithiasis by 2-DE, LC-MS, and ELISA. Subsequently, we demonstrated the high expression of peroxiredoxin 2 (PRDX2) in HCC based on the TCGA database and clinical sample analysis. Furthermore, PRDX2 overexpression enhanced the viability of HCC cells. And PRDX2 silencing induced senescence of HCC cells. In vivo, knockdown of PRDX2 significantly reduced the weight of xenograft tumors. PRDX2 also was found to activate the Wnt/β-catenin pathway by inducing β-catenin nuclear translocation. Consequently, we proved that silencing PRDX2 could inhibit proliferation and Wnt/β-catenin pathway while promoting senescence in HCC cells.
Collapse
Affiliation(s)
- XUEGANG YANG
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - XIANHONG XIANG
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - GUOHUI XU
- Department of Interventional Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Radiation Oncology Key Laboratory of Sichuan Province, Chengdu, 610041, China
| | - SHI ZHOU
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - TIANZHI AN
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, 550002, China
| | - ZHI HUANG
- Department of Interventional Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, 550002, China
| |
Collapse
|
3
|
Arrè V, Scialpi R, Centonze M, Giannelli G, Scavo MP, Negro R. The 'speck'-tacular oversight of the NLRP3-pyroptosis pathway on gastrointestinal inflammatory diseases and tumorigenesis. J Biomed Sci 2023; 30:90. [PMID: 37891577 PMCID: PMC10612184 DOI: 10.1186/s12929-023-00983-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
The NLRP3 inflammasome is an intracellular sensor and an essential component of the innate immune system involved in danger recognition. An important hallmark of inflammasome activation is the formation of a single supramolecular punctum, known as a speck, per cell, which is the site where the pro-inflammatory cytokines IL-1β and IL-18 are converted into their bioactive form. Speck also provides the platform for gasdermin D protein activation, whose N-terminus domain perforates the plasma membrane, allowing the release of mature cytokines alongside with a highly inflammatory form of cell death, namely pyroptosis. Although controlled NLRP3 inflammasome-pyroptosis pathway activation preserves mucosal immunity homeostasis and contributes to host defense, a prolonged trigger is deleterious and could lead, in genetically predisposed subjects, to the onset of inflammatory bowel disease, including Crohn's disease and ulcerative colitis, as well as to gastrointestinal cancer. Experimental evidence shows that the NLRP3 inflammasome has both protective and pathogenic abilities. In this review we highlight the impact of the NLRP3-pyroptosis axis on the pathophysiology of the gastrointestinal tract at molecular level, focusing on newly discovered features bearing pro- and anti-inflammatory and neoplastic activity, and on targeted therapies tested in preclinical and clinical trials.
Collapse
Affiliation(s)
- Valentina Arrè
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Rosanna Scialpi
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Matteo Centonze
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy
| | - Roberto Negro
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. de Bellis", IRCCS Research Hospital, Via Turi 27, 70013, Castellana Grotte, BA, Italy.
| |
Collapse
|
4
|
Li GQ, Gao SX, Wang FH, Kang L, Tang ZY, Ma XD. Anticancer mechanisms on pyroptosis induced by Oridonin: New potential targeted therapeutic strategies. Biomed Pharmacother 2023; 165:115019. [PMID: 37329709 DOI: 10.1016/j.biopha.2023.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023] Open
Abstract
Pyroptosis is a type of inflammatory cell death that is triggered by the formation of pores on the cell membrane by gasdermin (GSDM) family proteins. This process activates inflammasomes and leads to the maturation and release of proinflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Pyroptosis, a form of programmed cell death, has been found to be associated with various biomolecules such as caspases, granzymes, non-coding RNA (lncRNA), reactive oxygen species (ROS), and NOD-like receptor protein 3 (NLRP3). These biomolecules have been shown to play a dual role in cancer by affecting cell proliferation, metastasis, and the tumor microenvironment (TME), resulting in both tumor promotion and anti-tumor effects. Recent studies have found that Oridonin (Ori) has anti-tumor effects by regulating pyroptosis through various pathways. Ori can inhibit pyroptosis by inhibiting caspase-1, which is responsible for activating pyroptosis of the canonical pathway. Additionally, Ori can inhibit pyroptosis by inhibiting NLRP3, which is responsible for activating pyroptosis of the noncanonical pathway. Interestingly, Ori can also activate pyroptosis by activating caspase-3 and caspase-8, which are responsible for activating pyroptosis of the emerging pathway; Ori has been found to be effective in inhibiting pyroptosis by blocking the action of perforin, which is responsible for facilitating the entry of granzyme into cells and activating pyroptosis. Additionally, Ori plays a crucial role in regulating pyroptosis by promoting the accumulation of ROS while inhibiting the ncRNA and NLRP3 pathways. It is worth noting that all of these pathways ultimately regulate pyroptosis by influencing the cleavage of GSDM, which is a key factor in the process. These studies concludes that Ori has extensive anti-cancer effects that are related to its potential regulatory function on pyroptosis. The paper summarizes several potential ways in which Ori participates in the regulation of pyroptosis, providing a reference for further study on the relationship between Ori, pyroptosis, and cancer.
Collapse
Affiliation(s)
- Guo Qiang Li
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Shi Xiang Gao
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Fu Han Wang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Affiliated Fudan University, Shang Hai 200030, PR China.
| | - Ze Yao Tang
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| | - Xiao Dong Ma
- Pharmacy school, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|