1
|
de Oliveira GV, Soares MV, Cordeiro LM, da Silva AF, Venturini L, Ilha L, Baptista FBO, da Silveira TL, Soares FAA, Iglesias BA. Toxicological assessment of photoactivated tetra-cationic porphyrin molecules under white light exposure in a Caenorhabditis elegans model. Toxicology 2024; 504:153793. [PMID: 38574843 DOI: 10.1016/j.tox.2024.153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Photodynamic therapy (PDT) utilizes the potential of photosensitizing substances to absorb light energy and produce reactive oxygen species. Tetra-cationic porphyrins, which have organic or coordination compounds attached to their periphery, are heterocyclic derivatives with well-described antimicrobial and antitumoral properties. This is due to their ability to produce reactive oxygen species and their photobiological properties in solution. Consequently, these molecules are promising candidates as new and more effective photosensitizers with biomedical, environmental, and other biomedical applications. Prior to human exposure, it is essential to establish the toxicological profile of these molecules using in vivo models. In this study, we used Caenorhabditis elegans, a small free-living nematode, as a model for assessing toxic effects and predicting toxicity in preclinical research. We evaluated the toxic effects of porphyrins (neutral and tetra-cationic) on nematodes under dark/light conditions. Our findings demonstrate that tetra-methylated porphyrins (3TMeP and 4TMeP) at a concentration of 3.3 µg/mL (1.36 and 0.93 µM) exhibit high toxicity (as evidenced by reduced survival, development, and locomotion) under dark conditions. Moreover, photoactivated tetra-methylated porphyrins induce higher ROS levels compared to neutral (3TPyP and 4TPyP), tetra-palladated (3PdTPyP and 4PdTPyP), and tetra-platinated (3PtTPyP and 4PtTPyP) porphyrins, which may be responsible for the observed toxic effects.
Collapse
Affiliation(s)
- Gabriela Vitória de Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Marcell Valandro Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Larissa Marafiga Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Franzen da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Luiza Venturini
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Larissa Ilha
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Fabiane Bicca Obetine Baptista
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Tássia Limana da Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| | - Bernardo Almeida Iglesias
- Laboratory of Bioinorganic and Porphyrinic Materials, Department of Chemistry, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul, Brazil.
| |
Collapse
|
2
|
Apostolidou CP, Kokotidou C, Platania V, Nikolaou V, Landrou G, Nikoloudakis E, Charalambidis G, Chatzinikolaidou M, Coutsolelos AG, Mitraki A. Antimicrobial Potency of Fmoc-Phe-Phe Dipeptide Hydrogels with Encapsulated Porphyrin Chromophores Is a Promising Alternative in Antimicrobial Resistance. Biomolecules 2024; 14:226. [PMID: 38397463 PMCID: PMC10887087 DOI: 10.3390/biom14020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant global health risk as a consequence of misuse of antibiotics. Owing to the increasing antimicrobial resistance, it became imperative to develop novel molecules and materials with antimicrobial properties. Porphyrins and metalloporphyrins are compounds which present antimicrobial properties especially after irradiation. As a consequence, porphyrinoids have recently been utilized as antimicrobial agents in antimicrobial photodynamic inactivation in bacteria and other microorganisms. Herein, we report the encapsulation of porphyrins into peptide hydrogels which serve as delivery vehicles. We selected the self-assembling Fmoc-Phe-Phe dipeptide, a potent gelator, as a scaffold due to its previously reported biocompatibility and three different water-soluble porphyrins as photosensitizers. We evaluated the structural, mechanical and in vitro degradation properties of these hydrogels, their interaction with NIH3T3 mouse skin fibroblasts, and we assessed their antimicrobial efficacy against Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) bacteria. We found out that the hydrogels are cytocompatible and display antimicrobial efficiency against both strains with the zinc porphyrins being more efficient. Therefore, these hydrogels present a promising alternative for combating bacterial infections in the face of growing AMR concerns.
Collapse
Affiliation(s)
- Chrysanthi Pinelopi Apostolidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| | - Chrysoula Kokotidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| | - Varvara Platania
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| | - Vasilis Nikolaou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
| | - Georgios Landrou
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
| | - Emmanouil Nikoloudakis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
| | - Georgios Charalambidis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| | - Athanassios G. Coutsolelos
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Voutes Campus, 70013 Heraklion, Greece (G.L.); (E.N.); (G.C.)
| | - Anna Mitraki
- Department of Materials Science and Technology, University of Crete, Voutes Campus, 71003 Heraklion, Greece; (C.P.A.); (C.K.); (V.P.)
- Institute of Electronic Structure and Laser (IESL) FORTH, 70013 Heraklion, Greece
| |
Collapse
|
3
|
Antoshin A, Gostev M, Khristidis Y, Giliazova A, Voloshin S, Blagushina N, Smirnova O, Diachkova E, Istranova E, Usanova A, Solodov N, Fayzullin A, Ivanova E, Sadchikova E, Vergara Bashkatova MN, Drakina O, Tarasenko S, Timashev P. Electrophoretically Co-Deposited Collagen-Lactoferrin Membranes with Enhanced Pro-Regenerative Properties for Oral Soft Tissue Regeneration. Int J Mol Sci 2023; 24:17330. [PMID: 38139159 PMCID: PMC10743871 DOI: 10.3390/ijms242417330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The quality of soft tissue defect regeneration after dental surgeries largely determines their final success. Collagen membranes have been proposed for the healing of such defects, but in some cases, they do not guarantee a sufficient volume of the regenerated tissue and vascularization. For this purpose, lactoferrin, a protein with natural pro-regenerative, anti-inflammatory, and pro-angiogenic activity, can be added to collagen. In this article, we used a semipermeable barrier-assisted electrophoretic deposition (SBA-EPD) method for the production of collagen-lactoferrin membranes. The membrane structure was studied by SEM, and its mechanical properties were shown. The lactoferrin release kinetics were shown by ELISA within 75 h. When tested in vitro, we demonstrated that the collagen-lactoferrin membranes significantly increased the proliferation of keratinocytes (HaCaT) and fibroblasts (977hTERT) compared to blank collagen membranes. In vivo, on the vestibuloplasty and free gingival graft harvesting models, we showed that collagen-lactoferrin membranes decreased the wound inflammation and increased the healing rates and regeneration quality. In some parameters, collagen-lactoferrin membranes outperformed not only blank collagen membranes, but also the commercial membrane Mucograft®. Thus, we proved that collagen-lactoferrin membranes produced by the SBA-EPD method may be a valuable alternative to commercially used membranes for soft tissue regeneration in the oral cavity.
Collapse
Affiliation(s)
- Artem Antoshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Mikhail Gostev
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Aliia Giliazova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Sergei Voloshin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Nataliia Blagushina
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Ekaterina Diachkova
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Istranova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Anna Usanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Nikolai Solodov
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Alexey Fayzullin
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Ivanova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Elena Sadchikova
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119344 Moscow, Russia
| | | | - Olga Drakina
- Department of Operative Surgery and Topographic Anatomy, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Svetlana Tarasenko
- Department of Oral Surgery, Borovskiy Institute of Dentistry, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|