1
|
Cao J, Song Z, Du T, Du X. Antimicrobial materials based on photothermal action and their application in wound treatment. BURNS & TRAUMA 2024; 12:tkae046. [PMID: 39659560 PMCID: PMC11630079 DOI: 10.1093/burnst/tkae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 12/12/2024]
Abstract
Considering the increasing abundance of antibiotic-resistant bacteria, novel antimicrobial approaches need to be investigated. Photothermal therapy (PTT), an innovative noninvasive therapeutic technique, has demonstrated significant potential in addressing drug-resistant bacteria and bacterial biofilms. However, when used in isolation, PTT requires higher-temperature conditions to effectively eradicate bacteria, thereby potentially harming healthy tissues and inducing new inflammation. This study aims to present a comprehensive review of nanomaterials with intrinsic antimicrobial properties, antimicrobial materials relying on photothermal action, and nanomaterials using drug delivery antimicrobial action, along with their applications in antimicrobials. Additionally, the synergistic mechanisms of these antimicrobial approaches are elucidated. The review provides a reference for developing multifunctional photothermal nanoplatforms for treating bacterially infected wounds.
Collapse
Affiliation(s)
- Jiangli Cao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan 430070, PR China
| | - Ting Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, No.29, Thirteenth Street, Binhai New Area, Tianjin 300457, PR China
| |
Collapse
|
2
|
Salmani-Zarchi H, Mousavi-Sagharchi SMA, Sepahdoost N, Ranjbar-Jamalabadi M, Gross JD, Jooya H, Samadi A. Antimicrobial Feature of Nanoparticles in the Antibiotic Resistance Era: From Mechanism to Application. Adv Biomed Res 2024; 13:113. [PMID: 39717242 PMCID: PMC11665187 DOI: 10.4103/abr.abr_92_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 12/25/2024] Open
Abstract
The growth of nanoscale sciences enables us to define and design new methods and materials for a better life. Health and disease prevention are the main issues in the human lifespan. Some nanoparticles (NPs) have antimicrobial properties that make them useful in many applications. In recent years, NPs have been used as antibiotics to overcome drug resistance or as drug carriers with antimicrobial features. They can also serve as antimicrobial coatings for implants in different body areas. The antimicrobial feature of NPs is based on different mechanisms. For example, the oxidative functions of NPs can inhibit nucleic acid replication and destroy the microbial cell membrane as well as interfere with their cellular functions and biochemical cycles. On the other hand, NPs can disrupt the pathogens' lifecycle by interrupting vital points of their life, such as virus uncoating and entry into human cells. Many types of NPs have been tested by different scientists for these purposes. Silver, gold, copper, and titanium have shown the most ability to inhibit and remove pathogens inside and outside the body. In this review, the authors endeavor to comprehensively describe the antimicrobial features of NPs and their applications for different biomedical goals.
Collapse
Affiliation(s)
- Hamed Salmani-Zarchi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Nafise Sepahdoost
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdieh Ranjbar-Jamalabadi
- Department of Polymer Engineering, Faculty of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Jeffrey D. Gross
- ReCELLebrate Regenerative Medicine Clinic, Henderson, Nevada, USA
| | - Hossein Jooya
- Biochemistry Group, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Samadi
- Department of Basic Sciences, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| |
Collapse
|
3
|
Krüger D, Matshwele JTP, Mukhtar MD, Baecker D. Insights into the Versatility of Using Atomic Absorption Spectrometry in Antibacterial Research. Molecules 2024; 29:3120. [PMID: 38999072 PMCID: PMC11243102 DOI: 10.3390/molecules29133120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The ongoing development of bacterial resistance to antibiotics is a global challenge. Research in that field is thus necessary. Analytical techniques are required for such a purpose. From this perspective, the focus was on atomic absorption spectrometry (AAS). Although it is old, AAS often offers unexpected potential. Of course, this should be exploited. The aim was therefore to demonstrate the versatility of the technique in antibacterial research. This is illustrated by various examples of its practical application. AAS can be used, for example, to confirm the identity of antibacterial compounds, for purity controls, or to quantify the antibiotics in pharmaceutical preparations. The latter allowed analysis without laborious sample preparation and without interference from other excipients. In addition, AAS can help elucidate the mode of action or resistance mechanisms. In this context, quantifying the accumulation of the antibiotic drug in the cell of (resistant) bacteria appears to play an important role. The general application of AAS is not limited to metal-containing drugs, but also enables the determination of some organic chemical antibiotics. Altogether, this perspective presents a range of applications for AAS in antibacterial research, intending to raise awareness of the method and may thus contribute to the fight against resistance.
Collapse
Affiliation(s)
- David Krüger
- Department of Pharmaceutical Biology, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| | - James T P Matshwele
- Department of Chemistry, Faculty of Science, University of Botswana, Private Bag 0704, Gaborone, Botswana
| | - Muhammad Dauda Mukhtar
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Bayero University Kano, Gwarzo Road, Kano PMB 3011, Nigeria
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, 14195 Berlin, Germany
| |
Collapse
|
4
|
Mosallam FM, Elshimy R. Eradication of Klebsiella pneumoniae pulmonary infection by silver oxytetracycline nano-structure. AMB Express 2024; 14:62. [PMID: 38811509 PMCID: PMC11136936 DOI: 10.1186/s13568-024-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Targeted bactericidal nanosystems hold significant promise to improve the efficacy of existing antimicrobials for treatment of severe bacterial infections by minimizing the side effects and lowering the risk of antibiotic resistance development. In this work, Silver Oxytetracycline Nano-structure (Ag-OTC-Ns) was developed for selective and effective eradication of Klebsiella pneumoniae pulmonary infection. Ag-OTC-Ns were prepared by simple homogenization-ultrasonication method and were characterized by DLS, Zeta potential, TEM and FT-IR. The antimicrobial activity of Ag-OTC-Ns was evaluated in vitro using broth micro-dilution technique and time-kill methods. Our study showed that MICs of AgNO3, OTC, AgNPs and Ag-OTC-Ns were 100, 100, 50 and 6.25 µg/ml, respectively. Ag-OTC-Ns demonstrated higher bactericidal efficacy against the targeted Klebsiella pneumoniae at 12.5 µg/ml compared to the free Oxytetracycline, AgNO3 and AgNPs. In vivo results confirmed that, Ag-OTC-Ns could significantly eradicate K. pneumoniae from mice lung in compare with free Oxytetracycline, AgNO3 and AgNPs. In addition, Ag-OTC-Ns could effectually diminish the inflammatory biomarkers levels of Interferon Gamma and IL-12, and as a result it could effectively lower lung damage in K. pneumoniae infected mice. Ag-OTC-Ns has no significant toxicity on tested mice along the experimental period, there was no sign of behavioral abnormality in the surviving mice indicating that the Ag-OTC-Ns is safe at the used concentration. Furthermore, capability of 5 kGy Gamma ray to sterilize Ag-OTC-Ns solution without affecting it stability was proven.
Collapse
Affiliation(s)
- Farag M Mosallam
- Drug Radiation Research Department, Microbiology Lab, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Rana Elshimy
- Microbiology and Immunology, Faculty of Pharmacy, AL-Aharm Canadian University (ACU), Giza, Egypt
- Microbiology and Immunology, Egyptian Drug Authority, Cairo, Egypt
| |
Collapse
|
5
|
Shabatina TI, Gromova YA, Vernaya OI, Soloviev AV, Shabatin AV, Morosov YN, Astashova IV, Melnikov MY. Pharmaceutical Nanoparticles Formation and Their Physico-Chemical and Biomedical Properties. Pharmaceuticals (Basel) 2024; 17:587. [PMID: 38794157 PMCID: PMC11124199 DOI: 10.3390/ph17050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
The use of medicinal substances in nanosized forms (nanoforms, nanoparticles) allows the therapeutic effectiveness of pharmaceutical preparations to be increased due to several factors: (1) the high specific surface area of nanomaterials, and (2) the high concentration of surface-active centers interacting with biological objects. In the case of drug nanoforms, even low concentrations of a bioactive substance can have a significant therapeutic effect on living organisms. These effects allow pharmacists to use lower doses of active components, consequently lowering the toxic side effects of pharmaceutical nanoform preparations. It is known that many drug substances that are currently in development are poorly soluble in water, so they have insufficient bioavailability. Converting them into nanoforms will increase their rate of dissolution, and the increased saturation solubility of drug nanocrystals also makes a significant contribution to their high therapeutic efficiency. Some physical and chemical methods can contribute to the formation of both pure drug nanoparticles and their ligand or of polymer-covered nanoforms, which are characterized by higher stability. This review describes the most commonly used methods for the preparation of nanoforms (nanoparticles) of different medicinal substances, paying close attention to modern supercritical and cryogenic technologies and the advantages and disadvantages of the described methods and techniques; moreover, the improvements in the physico-chemical and biomedical properties of the obtained medicinal nanoforms are also discussed.
Collapse
Affiliation(s)
- Tatyana I. Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Yana A. Gromova
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| | - Olga I. Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Andrei V. Soloviev
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| | - Andrei V. Shabatin
- Frumkin Institute of Physical Chemistry and Electrochemistry RAN, Moscow 119071, Russia;
| | - Yurii N. Morosov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
- Faculty of Fundamental Sciences, N.E. Bauman Moscow Technical State University, Moscow 105005, Russia
| | - Irina V. Astashova
- Department of Mechanic and Mathematics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Michail Y. Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow 119991, Russia; (Y.A.G.); (O.I.V.); (A.V.S.); (Y.N.M.); (M.Y.M.)
| |
Collapse
|
6
|
Parada J, Tortella G, Seabra AB, Fincheira P, Rubilar O. Potential Antifungal Effect of Copper Oxide Nanoparticles Combined with Fungicides against Botrytis cinerea and Fusarium oxysporum. Antibiotics (Basel) 2024; 13:215. [PMID: 38534650 DOI: 10.3390/antibiotics13030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
Copper oxide nanoparticles (NCuO) have emerged as an alternative to pesticides due to their antifungal effect against various phytopathogens. Combining them with fungicides represents an advantageous strategy for reducing the necessary amount of both agents to inhibit fungal growth, simultaneously reducing their environmental release. This study aimed to evaluate the antifungal activity of NCuO combined with three fungicide models separately: Iprodione (IPR), Tebuconazole (TEB), and Pyrimethanil (PYR) against two phytopathogenic fungi: Botrytis cinerea and Fusarium oxysporum. The fractional inhibitory concentration (FIC) was calculated as a synergism indicator (FIC ≤ 0.5). The NCuO interacted synergistically with TEB against both fungi and with IPR only against B. cinerea. The interaction with PYR was additive against both fungi (FIC > 0.5). The B. cinerea biomass was inhibited by 80.9% and 93% using 20 mg L-1 NCuO + 1.56 mg L-1 TEB, and 40 mg L-1 NCuO + 12 µg L-1 IPR, respectively, without significant differences compared to the inhibition provoked by 160 mg L-1 NCuO. Additionally, the protein leakage and nucleic acid release were also evaluated as mechanisms associated with the synergistic effect. The results obtained in this study revealed that combining nanoparticles with fungicides can be an adequate strategy to significantly reduce the release of metals and agrochemicals into the environment after being used as antifungals.
Collapse
Affiliation(s)
- Javiera Parada
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Gonzalo Tortella
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Paola Fincheira
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| | - Olga Rubilar
- Biotechnological Research Center Applied to the Environment (CIBAMA-BIOREN), Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
- Chemical Engineering Department, Faculty of Engendering and Science, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
7
|
Silina EV, Ivanova OS, Manturova NE, Medvedeva OA, Shevchenko AV, Vorsina ES, Achar RR, Parfenov VA, Stupin VA. Antimicrobial Activity of Citrate-Coated Cerium Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:354. [PMID: 38392727 PMCID: PMC10893433 DOI: 10.3390/nano14040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The purpose of this study was to investigate the antimicrobial activity of citrate-stabilized sols of cerium oxide nanoparticles at different concentrations via different microbiological methods and to compare the effect with the peroxidase activity of nanoceria for the subsequent development of a regeneration-stimulating medical and/or veterinary wound-healing product providing new types of antimicrobial action. The object of this study was cerium oxide nanoparticles synthesized from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid (the size of the nanoparticles was 3-5 nm, and their aggregates were 60-130 nm). Nanoceria oxide sols with a wide range of concentrations (10-1-10-6 M) as well as powder (the dry substance) were used. Both bacterial and fungal strains (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Candida albicans, Aspergillus brasielensis) were used for the microbiological studies. The antimicrobial activity of nanoceria was investigated across a wide range of concentrations using three methods sequentially; the antimicrobial activity was studied by examining diffusion into agar, the serial dilution method was used to detect the minimum inhibitory and bactericidal concentrations, and, finally, gas chromatography with mass-selective detection was performed to study the inhibition of E. coli's growth. To study the redox activity of different concentrations of nanocerium, we studied the intensity of chemiluminescence in the oxidation reaction of luminol in the presence of hydrogen peroxide. As a result of this study's use of the agar diffusion and serial dilution methods followed by sowing, no significant evidence of antimicrobial activity was found. At the same time, in the current study of antimicrobial activity against E. coli strains using gas chromatography with mass spectrometry, the ability of nanoceria to significantly inhibit the growth and reproduction of microorganisms after 24 h and, in particular, after 48 h of incubation at a wide range of concentrations, 10-2-10-5 M (48-95% reduction in the number of microbes with a significant dose-dependent effect) was determined as the optimum concentration. A reliable redox activity of nanoceria coated with citrate was established, increasing in proportion to the concentration, confirming the oxidative mechanism of the action of nanoceria. Thus, nanoceria have a dose-dependent bacteriostatic effect, which is most pronounced at concentrations of 10-2-10-3 M. Unlike the effects of classical antiseptics, the effect was manifested from 2 days and increased during the observation. To study the antimicrobial activity of nanomaterials, it is advisable not to use classical qualitative and semi-quantitative methods; rather, the employment of more accurate quantitative methods is advised, in particular, gas chromatography-mass spectrometry, during several days of incubation.
Collapse
Affiliation(s)
- Ekaterina Vladimirovna Silina
- Department of Pathological Physiology, Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Olga Sergeevna Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy Pr., 31, Bldg. 4, 119071 Moscow, Russia;
| | - Natalia Evgenevna Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Olga Anatolyevna Medvedeva
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Alina Vladimirovna Shevchenko
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Ekaterina Sergeevna Vorsina
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Vladimir Anatolevich Parfenov
- Department of Pathological Physiology, Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Victor Aleksandrovich Stupin
- Department of Hospital Surgery No.1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| |
Collapse
|
8
|
Kiarashi M, Mahamed P, Ghotbi N, Tadayonfard A, Nasiri K, Kazemi P, Badkoobeh A, Yasamineh S, Joudaki A. Spotlight on therapeutic efficiency of green synthesis metals and their oxide nanoparticles in periodontitis. J Nanobiotechnology 2024; 22:21. [PMID: 38183090 PMCID: PMC10770920 DOI: 10.1186/s12951-023-02284-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Periodontitis, one of the most prevalent dental diseases, causes the loss of bone and gum tissue that hold teeth in place. Several bacteria, commonly present in clinically healthy oral cavities, may induce and perpetuate periodontitis when their concentration rises in the gingival sulcus. Antibacterial effect against various Gram-negative and Gram-positive bacteria, including pathogenic and drug-resistant ones, has been shown for several distinct transient metal and metal oxide NPs. Therefore, NPs may be used in biomedicine to treat periodontal problems and in nanotechnology to inhibit the development of microorganisms. Instead of using harmful chemicals or energy-intensive machinery, biosynthesis of metal and metal oxide nanoparticles (NPs) has been suggested. To produce metal and metal oxide NPs, the ideal technique is "Green" synthesis because of its low toxicity and safety for human health and the environment. Gold NPs (AuNPs) appear to be less toxic to mammalian cells than other nanometals because their antibacterial activity is not dependent on reactive oxygen species (ROS). AgNPs also possess chemical stability, catalytic activity, and superior electrical and thermal conductivity, to name a few of their other advantageous characteristics. It was observed that zinc oxide (ZnO) NPs and copper (Cu) NPs exhibited discernible inhibitory effects against gram-positive and gram-negative bacterial strains, respectively. ZnO NPs demonstrated bactericidal activity against the microorganisms responsible for periodontitis. Medications containing magnetic NPs are highly effective against multidrug-resistant bacterial and fungal infections. The titanium dioxide (TiO2) NPs are implicated in elevating salivary peroxidase activity in individuals diagnosed with chronic periodontitis. Furthermore, specific metallic NPs have the potential to enhance the antimicrobial efficacy of periodontitis treatments when combined. Therefore, these NPs, as well as their oxide NPs, are only some of the metals and metal oxides that have been synthesized in environmentally friendly ways and shown to have therapeutic benefits against periodontitis.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Nader Ghotbi
- General Dentist, Isfahan Azad University, School of Dentistry, Isfahan, Iran
| | - Azadeh Tadayonfard
- Maxillofacial prosthetics fellow, Postgraduate department of prosthodontics, Dental Faculty,Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Nasiri
- Department of Dentistry, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Parisa Kazemi
- Faculty of Dentistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Ashkan Badkoobeh
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Saman Yasamineh
- Azad Researchers, Viro-Biotech, Tehran, Iran.
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Ali Joudaki
- Department of Oral and Maxillofacial Surgery, Lorestan University of Medical Sciences, Khorram Abad, Lorestan, Iran.
| |
Collapse
|
9
|
Kaur R, Kaur K, Alyami MH, Lang DK, Saini B, Bayan MF, Chandrasekaran B. Combating Microbial Infections Using Metal-Based Nanoparticles as Potential Therapeutic Alternatives. Antibiotics (Basel) 2023; 12:antibiotics12050909. [PMID: 37237812 DOI: 10.3390/antibiotics12050909] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The nature of microorganisms and the efficiency of antimicrobials have witnessed a huge co-dependent change in their dynamics over the last few decades. On the other side, metals and metallic compounds have gained popularity owing to their effectiveness against various microbial strains. A structured search of both research and review papers was conducted via different electronic databases, such as PubMed, Bentham, Springer, and Science Direct, among others, for the present review. Along with these, marketed products, patents, and Clinicaltrials.gov were also referred to for our review. Different microbes such as bacteria, fungi, etc., and their diverse species and strains have been reviewed and found to be sensitive to metal-carrying formulations. The products are observed to restrict growth, multiplication, and biofilm formation effectively and adequately. Silver has an apt use in this area of treatment and recovery, and other metals like copper, gold, iron, and gallium have also been observed to generate antimicrobial activity. The present review identified membrane disruption, oxidative stress, and interaction with proteins and enzymes to be the primary microbicidal processes. Elaborating the action, nanoparticles and nanosystems are shown to work in our favor in well excelled and rational ways.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Kirandeep Kaur
- Department of Clinical Safety and Pharmacovigilance, Soterius India Private Limited, Nehru Place, Delhi 110019, India
| | - Mohammad H Alyami
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66462, Saudi Arabia
| | | | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Mohammad F Bayan
- Faculty of Pharmacy, Philadelphia University, P.O. Box 1, Amman 19392, Jordan
| | | |
Collapse
|