1
|
Wu SD, Weller H, Vossmeyer T, Hsu SH. Motion Sensing by a Highly Sensitive Nanogold Strain Sensor in a Biomimetic 3D Environment. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56599-56610. [PMID: 39253872 PMCID: PMC11503636 DOI: 10.1021/acsami.4c08105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Recent advancements in flexible electronics have highlighted their potential in biomedical applications, primarily due to their human-friendly nature. This study introduces a new flexible electronic system designed for motion sensing in a biomimetic three-dimensional (3D) environment. The system features a self-healing gel matrix (chitosan-based hydrogel) that effectively mimics the dynamics of the extracellular matrix (ECM), and is integrated with a highly sensitive thin-film resistive strain sensor, which is fabricated by incorporating a cross-linked gold nanoparticle (GNP) thin film as the active conductive layer onto a biocompatible microphase-separated polyurethane (PU) substrate through a clean, rapid, and high-precision contact printing method. The GNP-PU strain sensor demonstrates high sensitivity (a gauge factor of ∼50), good stability, and waterproofing properties. The feasibility of detecting small motion was evaluated by sensing the beating of human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte spheroids embedded in the gel matrix. The integration of these components exemplifies a proof-of-concept for using flexible electronics comprising self-healing hydrogel and thin-film nanogold in cardiac sensing and offers promising insights into the development of next-generation biomimetic flexible electronic devices.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute
of Polymer Science and Engineering, National
Taiwan University, No.
1, Sec. 4 Roosevelt Road, Taipei 106319, Taiwan
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Horst Weller
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
- Fraunhofer
Center for Applied Nanotechnology CAN, Grindelallee 117, Hamburg 20146, Germany
| | - Tobias Vossmeyer
- Institute
of Physical Chemistry, University of Hamburg, Grindelallee 117, Hamburg 20146, Germany
| | - Shan-hui Hsu
- Institute
of Polymer Science and Engineering, National
Taiwan University, No.
1, Sec. 4 Roosevelt Road, Taipei 106319, Taiwan
- Institute
of Cellular and System Medicine, National
Health Research Institutes, Miaoli 350401, Taiwan
| |
Collapse
|
2
|
Liang T, Liu J, Liu F, Su X, Li X, Zeng J, Chen F, Wen H, Chen Y, Tao J, Lei Q, Li G, Cheng P. Application of Pro-angiogenic Biomaterials in Myocardial Infarction. ACS OMEGA 2024; 9:37505-37529. [PMID: 39281944 PMCID: PMC11391569 DOI: 10.1021/acsomega.4c04682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024]
Abstract
Biomaterials have potential applications in the treatment of myocardial infarction (MI). These biomaterials have the ability to mechanically support the ventricular wall and to modulate the inflammatory, metabolic, and local electrophysiological microenvironment. In addition, they can play an equally important role in promoting angiogenesis, which is the primary prerequisite for the treatment of MI. A variety of biomaterials are known to exert pro-angiogenic effects, but the pro-angiogenic mechanisms and functions of different biomaterials are complex and diverse, and have not yet been systematically described. This review will focus on the pro-angiogenesis of biomaterials and systematically describe the mechanisms and functions of different biomaterials in promoting angiogenesis in MI.
Collapse
Affiliation(s)
- Tingting Liang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Jun Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Feila Liu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400050, P. R. China
| | - Xiaohan Su
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Xue Li
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jiao Zeng
- Department of Breast and thyroid Surgery, Biological Targeting Laboratory of Breast Cancer, Academician (Expert) Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Fuli Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Heling Wen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Yu Chen
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jianhong Tao
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Qian Lei
- Department of Anesthesiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Gang Li
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Panke Cheng
- Institute of Cardiovascular Diseases & Department of Cardiology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| |
Collapse
|
3
|
Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications. Front Bioeng Biotechnol 2024; 12:1397668. [PMID: 39157438 PMCID: PMC11327468 DOI: 10.3389/fbioe.2024.1397668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Increased mass manufacturing and the pervasive use of plastics in many facets of daily life have had detrimental effects on the environment. As a result, these worries heighten the possibility of climate change due to the carbon dioxide emissions from burning conventional, non-biodegradable polymers. Accordingly, biodegradable gelatin and chitosan polymers are being created as a sustainable substitute for non-biodegradable polymeric materials in various applications. Chitosan is the only naturally occurring cationic alkaline polysaccharide, a well-known edible polymer derived from chitin. The biological activities of chitosan, such as its antioxidant, anticancer, and antimicrobial qualities, have recently piqued the interest of researchers. Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic breakdown of collagen protein and offers various medicinal advantages owing to its unique amino acid composition. In this review, we present an overview of recent studies focusing on applying chitosan and gelatin polymers in various fields. These include using gelatin and chitosan as food packaging, antioxidants and antimicrobial properties, properties encapsulating biologically active substances, tissue engineering, microencapsulation technology, water treatment, and drug delivery. This review emphasizes the significance of investigating sustainable options for non-biodegradable plastics. It showcases the diverse uses of gelatin and chitosan polymers in tackling environmental issues and driving progress across different industries.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Behrooz Dousti
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mahdi Karami-Khorramabadi
- Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Alborz, Iran
| |
Collapse
|
4
|
Keklikian A, de Barros NR, Rashad A, Chen Y, Tan J, Sheng R, Sun D, Liu H, Thankam FG. Chitosan-Polyethylene Glycol Inspired Polyelectrolyte Complex Hydrogel Templates Favoring NEO-Tissue Formation for Cardiac Tissue Engineering. Gels 2024; 10:46. [PMID: 38247769 PMCID: PMC10815274 DOI: 10.3390/gels10010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Neo-tissue formation and host tissue regeneration determine the success of cardiac tissue engineering where functional hydrogel scaffolds act as cardiac (extracellular matrix) ECM mimic. Translationally, the hydrogel templates promoting neo-cardiac tissue formation are currently limited; however, they are highly demanding in cardiac tissue engineering. The current study focused on the development of a panel of four chitosan-based polyelectrolyte hydrogels as cardiac scaffolds facilitating neo-cardiac tissue formation to promote cardiac regeneration. Chitosan-PEG (CP), gelatin-chitosan-PEG (GCP), hyaluronic acid-chitosan-PEG (HACP), and combined CP (CoCP) polyelectrolyte hydrogels were engineered by solvent casting and assessed for physiochemical, thermal, electrical, biodegradable, mechanical, and biological properties. The CP, GCP, HACP, and CoCP hydrogels exhibited excellent porosity (4.24 ± 0.18, 13.089 ± 1.13, 12.53 ± 1.30 and 15.88 ± 1.10 for CP, GCP, HACP and CoCP, respectively), water profile, mechanical strength, and amphiphilicity suitable for cardiac tissue engineering. The hydrogels were hemocompatible as evident from the negligible hemolysis and RBC aggregation and increased adsorption of plasma albumin. The hydrogels were cytocompatible as evident from the increased viability by MTT (>94% for all the four hydrogels) assay and direct contact assay. Also, the hydrogels supported the adhesion, growth, spreading, and proliferation of H9c2 cells as unveiled by rhodamine staining. The hydrogels promoted neo-tissue formation that was proven using rat and swine myocardial tissue explant culture. Compared to GCP and CoCP, CP and HACP were superior owing to the cell viability, hemocompatibility, and conductance, resulting in the highest degree of cytoskeletal organization and neo-tissue formation. The physiochemical and biological performance of these hydrogels supported neo-cardiac tissue formation. Overall, the CP, GCP, HACP, and CoCP hydrogel systems promise novel translational opportunities in regenerative cardiology.
Collapse
Affiliation(s)
- Angelo Keklikian
- Department of Translational Research, College of Osteopathic Medicine of the Pacific and Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (N.R.d.B.); (A.R.)
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, CA 90064, USA; (N.R.d.B.); (A.R.)
| | - Yiqing Chen
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Jinrui Tan
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Ruoyu Sheng
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Dongwei Sun
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Huinan Liu
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.C.); (R.S.); (D.S.); (H.L.)
| | - Finosh G. Thankam
- Department of Translational Research, College of Osteopathic Medicine of the Pacific and Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA 91766, USA;
| |
Collapse
|
5
|
Zavyalova O, Dąbrowska-Wisłocka D, Misiura K, Hołyńska-Iwan I. Chitosan-Glycolic Acid Gel Modification of Chloride Ion Transport in Mammalian Skin: An In Vitro Study. Molecules 2023; 28:6581. [PMID: 37764357 PMCID: PMC10537562 DOI: 10.3390/molecules28186581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Chitosan, a polyaminosaccharide with high medical and cosmetic potential, can be combined with the beneficial properties of glycolic acid to form a gel that not only moisturizes the skin, but also has a regenerative effect. Its involvement in the activation of biochemical processes may be associated with the activity of skin ion channels. Therefore, the aim of the research was to evaluate the immediate (15 s) and long-term (24 h) effect of chitosan-glycolic acid gel (CGG) on the transepithelial electric potential and the transepithelial electric resistance (R) of skin specimens tested in vitro. Stimulation during immediate and prolonged application of CGG to skin specimens resulted in a significant decrease in the measured minimal transepithelial electric potential (PDmin). The absence of any change in the R after the CGG application indicates that it does not affect the skin transmission, or cause distortion, microdamage or changes in ion permeability. However, the reduction in potential may be due to the increased transport of chloride ions, and thus water, from outside the cell into the cell interior. Increased secretion of chloride ions is achieved by stimulating the action of the CFTR (cystic fibrosis transmembrane conductance). It can be assumed that chitosan gently stimulates the secretion of chlorides, while maintaining a tendency to reduce the transport of sodium ions, without causing deformation or tissue damage.
Collapse
Affiliation(s)
- Olga Zavyalova
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (O.Z.); (D.D.-W.)
| | - Dominika Dąbrowska-Wisłocka
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (O.Z.); (D.D.-W.)
| | - Konrad Misiura
- Department of Chemical Technology and Pharmaceuticals, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (O.Z.); (D.D.-W.)
| | - Iga Hołyńska-Iwan
- Department of Pathobiochemistry and Clinical Chemistry, Faculty of Pharmacy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
6
|
Harley-Troxell ME, Steiner R, Advincula RC, Anderson DE, Dhar M. Interactions of Cells and Biomaterials for Nerve Tissue Engineering: Polymers and Fabrication. Polymers (Basel) 2023; 15:3685. [PMID: 37765540 PMCID: PMC10536046 DOI: 10.3390/polym15183685] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Neural injuries affect millions globally, significantly impacting their quality of life. The inability of these injuries to heal, limited ability to regenerate, and the lack of available treatments make regenerative medicine and tissue engineering a promising field of research for developing methods for nerve repair. This review evaluates the use of natural and synthetic polymers, and the fabrication methods applied that influence a cell's behavior. Methods include cross-linking hydrogels, incorporation of nanoparticles, and 3D printing with and without live cells. The endogenous cells within the injured area and any exogenous cells seeded on the polymer construct play a vital role in regulating healthy neural activity. This review evaluates the body's local and systemic reactions to the implanted materials. Although numerous variables are involved, many of these materials and methods have exhibited the potential to provide a biomaterial environment that promotes biocompatibility and the regeneration of a physical and functional nerve. Future studies may evaluate advanced methods for modifying material properties and characterizing the tissue-biomaterial interface for clinical applications.
Collapse
Affiliation(s)
- Meaghan E. Harley-Troxell
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Richard Steiner
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Rigoberto C. Advincula
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA;
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
| | - David E. Anderson
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| | - Madhu Dhar
- Tissue Engineering and Regenerative Medicine, Large Animal Clinical Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA; (M.E.H.-T.); (R.S.); (D.E.A.)
| |
Collapse
|
7
|
Farzamfar S, Richer M, Rahmani M, Naji M, Aleahmad M, Chabaud S, Bolduc S. Biological Macromolecule-Based Scaffolds for Urethra Reconstruction. Biomolecules 2023; 13:1167. [PMID: 37627232 PMCID: PMC10452429 DOI: 10.3390/biom13081167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Urethral reconstruction strategies are limited with many associated drawbacks. In this context, the main challenge is the unavailability of a suitable tissue that can endure urine exposure. However, most of the used tissues in clinical practices are non-specialized grafts that finally fail to prevent urine leakage. Tissue engineering has offered novel solutions to address this dilemma. In this technology, scaffolding biomaterials characteristics are of prime importance. Biological macromolecules are naturally derived polymers that have been extensively studied for various tissue engineering applications. This review discusses the recent advances, applications, and challenges of biological macromolecule-based scaffolds in urethral reconstruction.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Megan Richer
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Mahya Rahmani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran;
| | - Mehdi Aleahmad
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran;
| | - Stéphane Chabaud
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
| | - Stéphane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada; (S.F.); (M.R.); (S.C.)
- Department of Surgery, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
8
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|